-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 3600, 'abvar_counts': [3600, 12960000, 42180944400, 146661788160000, 511116754730490000, 1779232070475891360000, 6193386212896790690432400, 21559170290287610426204160000, 75047496554032974086510786403600, 261240336966227871792535640100000000], 'abvar_counts_str': '3600 12960000 42180944400 146661788160000 511116754730490000 1779232070475891360000 6193386212896790690432400 21559170290287610426204160000 75047496554032974086510786403600 261240336966227871792535640100000000 ', 'angle_corank': 2, 'angle_rank': 0, 'angles': [0.5, 0.5], 'center_dim': 2, 'curve_count': 60, 'curve_counts': [60, 3718, 205380, 12103438, 714924300, 42181355158, 2488651484820, 146830389134878, 8662995818654940, 511116756160338598], 'curve_counts_str': '60 3718 205380 12103438 714924300 42181355158 2488651484820 146830389134878 8662995818654940 511116756160338598 ', 'curves': ['y^2=x^5+58', 'y^2=2*x^5+57', 'y^2=55*x^6+10*x^5+34*x^4+32*x^3+52*x^2+14*x+31', 'y^2=51*x^6+20*x^5+9*x^4+5*x^3+45*x^2+28*x+3', 'y^2=40*x^6+52*x^5+12*x^4+48*x^3+12*x^2+52*x+40', 'y^2=21*x^6+45*x^5+24*x^4+37*x^3+24*x^2+45*x+21', 'y^2=14*x^6+26*x^5+33*x^4+11*x^3+12*x^2+54*x+24', 'y^2=28*x^6+52*x^5+7*x^4+22*x^3+24*x^2+49*x+48', 'y^2=17*x^6+57*x^5+37*x^4+37*x^3+44*x^2+51*x+41', 'y^2=34*x^6+55*x^5+15*x^4+15*x^3+29*x^2+43*x+23', 'y^2=16*x^6+3*x^5+35*x^4+58*x^3+35*x^2+3*x+16', 'y^2=32*x^6+6*x^5+11*x^4+57*x^3+11*x^2+6*x+32', 'y^2=15*x^6+51*x^5+2*x^4+20*x^3+53*x^2+17*x+8', 'y^2=30*x^6+43*x^5+4*x^4+40*x^3+47*x^2+34*x+16', 'y^2=29*x^6+11*x^5+56*x^4+39*x^3+5*x^2+24*x+34', 'y^2=54*x^6+12*x^5+7*x^4+14*x^2+11*x+19', 'y^2=45*x^6+19*x^4+19*x^2+45', 'y^2=31*x^6+38*x^4+38*x^2+31', 'y^2=45*x^6+38*x^4+17*x^2+6', 'y^2=16*x^6+33*x^4+7*x^2+10', 'y^2=x^6+x^3+45', 'y^2=2*x^6+2*x^3+31', 'y^2=24*x^6+5*x^5+37*x^4+24*x^3+38*x^2+51*x+32', 'y^2=48*x^6+10*x^5+15*x^4+48*x^3+17*x^2+43*x+5', 'y^2=30*x^6+15*x^5+56*x^4+14*x^3+38*x^2+51*x+14', 'y^2=x^6+30*x^5+53*x^4+28*x^3+17*x^2+43*x+28', 'y^2=x^6+x^3+35', 'y^2=2*x^6+2*x^3+11', 'y^2=57*x^6+49*x^5+30*x^4+22*x^3+31*x^2+28*x+5', 'y^2=55*x^6+39*x^5+x^4+44*x^3+3*x^2+56*x+10', 'y^2=50*x^6+32*x^5+48*x^4+40*x^3+57*x^2+18', 'y^2=41*x^6+5*x^5+37*x^4+21*x^3+55*x^2+36', 'y^2=2*x^6+55*x^5+23*x^4+22*x^3+50*x^2+44*x+24', 'y^2=4*x^6+51*x^5+46*x^4+44*x^3+41*x^2+29*x+48', 'y^2=x^6+27*x^5+30*x^4+30*x^3+30*x^2+27*x+1', 'y^2=2*x^6+54*x^5+x^4+x^3+x^2+54*x+2', 'y^2=6*x^6+16*x^5+25*x^4+40*x^3+9*x^2+5*x+11', 'y^2=12*x^6+32*x^5+50*x^4+21*x^3+18*x^2+10*x+22', 'y^2=29*x^6+24*x^5+31*x^4+16*x^3+31*x^2+24*x+29', 'y^2=58*x^6+48*x^5+3*x^4+32*x^3+3*x^2+48*x+58', 'y^2=46*x^6+23*x^5+8*x^4+39*x^3+54*x^2+5*x+3', 'y^2=33*x^6+46*x^5+16*x^4+19*x^3+49*x^2+10*x+6', 'y^2=43*x^6+44*x^5+10*x^4+2*x^3+2*x^2+23*x+23', 'y^2=27*x^6+29*x^5+20*x^4+4*x^3+4*x^2+46*x+46', 'y^2=17*x^6+36*x^5+54*x^4+14*x^3+54*x^2+36*x+17', 'y^2=34*x^6+13*x^5+49*x^4+28*x^3+49*x^2+13*x+34', 'y^2=41*x^6+39*x^4+39*x^2+41', 'y^2=23*x^6+19*x^4+19*x^2+23', 'y^2=41*x^6+19*x^4+38*x^2+33', 'y^2=20*x^6+52*x^4+45*x^2+42', 'y^2=30*x^6+36*x^5+54*x^4+29*x^3+19*x^2+52*x+2', 'y^2=x^6+13*x^5+49*x^4+58*x^3+38*x^2+45*x+4', 'y^2=12*x^6+11*x^5+50*x^4+5*x^3+21*x^2+6*x+7', 'y^2=24*x^6+22*x^5+41*x^4+10*x^3+42*x^2+12*x+14', 'y^2=8*x^6+45*x^5+58*x^4+30*x^3+54*x+6', 'y^2=16*x^6+31*x^5+57*x^4+x^3+49*x+12', 'y^2=50*x^6+42*x^5+56*x^4+48*x^3+13*x^2+2*x+44', 'y^2=41*x^6+25*x^5+53*x^4+37*x^3+26*x^2+4*x+29', 'y^2=49*x^6+16*x^5+11*x^4+30*x^3+11*x^2+16*x+49', 'y^2=39*x^6+32*x^5+22*x^4+x^3+22*x^2+32*x+39', 'y^2=25*x^6+20*x^5+26*x^4+34*x^3+25*x^2+15*x+22', 'y^2=50*x^6+40*x^5+52*x^4+9*x^3+50*x^2+30*x+44', 'y^2=54*x^6+58*x^5+23*x^4+14*x^3+23*x^2+58*x+54', 'y^2=49*x^6+57*x^5+46*x^4+28*x^3+46*x^2+57*x+49', 'y^2=16*x^6+6*x^5+16*x^4+12*x^3+53*x^2+58*x+1', 'y^2=32*x^6+12*x^5+32*x^4+24*x^3+47*x^2+57*x+2', 'y^2=21*x^6+4*x^5+41*x^4+2*x^3+41*x^2+4*x+21', 'y^2=42*x^6+8*x^5+23*x^4+4*x^3+23*x^2+8*x+42', 'y^2=x^6+58', 'y^2=x^6+51', 'y^2=2*x^6+43', 'y^2=12*x^5+20*x^3+3*x', 'y^2=29*x^6+29*x^5+46*x^4+20*x^2+25*x+16', 'y^2=58*x^6+58*x^5+33*x^4+40*x^2+50*x+32', 'y^2=46*x^6+9*x^5+55*x^4+10*x^3+55*x^2+9*x+46', 'y^2=33*x^6+18*x^5+51*x^4+20*x^3+51*x^2+18*x+33', 'y^2=25*x^6+x^4+x^2+25', 'y^2=50*x^6+2*x^4+2*x^2+50', 'y^2=25*x^6+2*x^4+4*x^2+23', 'y^2=36*x^6+10*x^4+20*x^2+52', 'y^2=2*x^6+8*x^5+49*x^4+57*x^3+30*x^2+19*x+41', 'y^2=4*x^6+16*x^5+39*x^4+55*x^3+x^2+38*x+23', 'y^2=x^6+x^3+28', 'y^2=2*x^6+2*x^3+56', 'y^2=30*x^6+10*x^5+56*x^4+17*x^3+24*x^2+50*x+39', 'y^2=x^6+20*x^5+53*x^4+34*x^3+48*x^2+41*x+19', 'y^2=x^6+x^3+3', 'y^2=2*x^6+2*x^3+6', 'y^2=8*x^6+56*x^5+29*x^4+21*x^3+3*x^2+10*x+42', 'y^2=16*x^6+53*x^5+58*x^4+42*x^3+6*x^2+20*x+25', 'y^2=30*x^6+58*x^5+24*x^4+2*x^3+7*x^2+33*x+21', 'y^2=33*x^6+2*x^5+22*x^4+52*x^3+54*x^2+43*x+19', 'y^2=7*x^6+4*x^5+44*x^4+45*x^3+49*x^2+27*x+38', 'y^2=36*x^6+47*x^5+28*x^4+3*x^3+35*x^2+55*x+15', 'y^2=13*x^6+35*x^5+56*x^4+6*x^3+11*x^2+51*x+30', 'y^2=18*x^6+23*x^5+55*x^4+2*x^3+55*x^2+23*x+18', 'y^2=36*x^6+46*x^5+51*x^4+4*x^3+51*x^2+46*x+36', 'y^2=53*x^6+50*x^5+2*x^4+3*x^3+14*x^2+31*x+7', 'y^2=47*x^6+41*x^5+4*x^4+6*x^3+28*x^2+3*x+14', 'y^2=38*x^6+19*x^5+21*x^4+57*x^3+21*x^2+19*x+38', 'y^2=17*x^6+38*x^5+42*x^4+55*x^3+42*x^2+38*x+17', 'y^2=14*x^6+x^5+19*x^3+33*x^2+21*x+4', 'y^2=28*x^6+2*x^5+38*x^3+7*x^2+42*x+8', 'y^2=11*x^6+43*x^5+57*x^4+17*x^3+49*x^2+13*x+18', 'y^2=22*x^6+27*x^5+55*x^4+34*x^3+39*x^2+26*x+36', 'y^2=48*x^6+55*x^5+54*x^4+22*x^3+54*x^2+55*x+48', 'y^2=37*x^6+51*x^5+49*x^4+44*x^3+49*x^2+51*x+37', 'y^2=43*x^6+16*x^5+46*x^4+55*x^3+8*x^2+x+38', 'y^2=27*x^6+32*x^5+33*x^4+51*x^3+16*x^2+2*x+17', 'y^2=38*x^6+28*x^5+46*x^4+5*x^3+54*x^2+54*x+11', 'y^2=17*x^6+56*x^5+33*x^4+10*x^3+49*x^2+49*x+22', 'y^2=22*x^6+22*x^5+35*x^4+17*x^3+15*x^2+51*x+5', 'y^2=44*x^6+44*x^5+11*x^4+34*x^3+30*x^2+43*x+10', 'y^2=57*x^6+38*x^5+50*x^4+41*x^3+50*x^2+38*x+57', 'y^2=55*x^6+17*x^5+41*x^4+23*x^3+41*x^2+17*x+55', 'y^2=23*x^6+50*x^5+49*x^4+53*x^3+8*x^2+5*x', 'y^2=46*x^6+41*x^5+39*x^4+47*x^3+16*x^2+10*x', 'y^2=x^6+x^3+17', 'y^2=2*x^6+2*x^3+34', 'y^2=56*x^6+4*x^5+9*x^4+28*x^3+45*x^2+41*x+38', 'y^2=53*x^6+8*x^5+18*x^4+56*x^3+31*x^2+23*x+17', 'y^2=22*x^6+23*x^5+57*x^4+50*x^3+37*x^2+30*x+46', 'y^2=44*x^6+46*x^5+55*x^4+41*x^3+15*x^2+x+33', 'y^2=52*x^5+39*x^4+24*x^3+15*x^2+44*x', 'y^2=50*x^6+39*x^5+6*x^4+42*x^3+33*x^2+44*x+44', 'y^2=41*x^6+19*x^5+12*x^4+25*x^3+7*x^2+29*x+29', 'y^2=24*x^6+2*x^5+34*x^4+15*x^3+34*x^2+2*x+24', 'y^2=48*x^6+4*x^5+9*x^4+30*x^3+9*x^2+4*x+48', 'y^2=51*x^6+34*x^5+11*x^4+54*x^3+2*x^2+6*x+7', 'y^2=43*x^6+9*x^5+22*x^4+49*x^3+4*x^2+12*x+14', 'y^2=53*x^6+41*x^5+14*x^4+46*x^3+14*x^2+41*x+53', 'y^2=47*x^6+23*x^5+28*x^4+33*x^3+28*x^2+23*x+47'], 'dim1_distinct': 1, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'g': 2, 'galois_groups': ['2T1'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 1, 'geometric_extension_degree': 2, 'geometric_galois_groups': ['1T1'], 'geometric_number_fields': ['1.1.1.1'], 'geometric_splitting_field': '1.1.1.1', 'geometric_splitting_polynomials': [[0, 1]], 'has_geom_ss_factor': True, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 132, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': False, 'is_squarefree': False, 'is_supersingular': True, 'jacobian_count': 132, 'label': '2.59.a_eo', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 4, 'max_twist_degree': 12, 'newton_coelevation': 0, 'newton_elevation': 2, 'number_fields': ['2.0.59.1'], 'p': 59, 'p_rank': 0, 'p_rank_deficit': 2, 'poly': [1, 0, 118, 0, 3481], 'poly_str': '1 0 118 0 3481 ', 'primitive_models': [], 'q': 59, 'real_poly': [1], 'simple_distinct': ['1.59.a'], 'simple_factors': ['1.59.aA', '1.59.aB'], 'simple_multiplicities': [2], 'slopes': ['1/2A', '1/2B', '1/2C', '1/2D'], 'splitting_field': '2.0.59.1', 'splitting_polynomials': [[15, -1, 1]], 'twist_count': 5, 'twists': [['2.59.a_ach', '2.205379.a_xjqk', 3], ['2.59.a_aeo', '2.12117361.aupo_gdcooc', 4], ['2.59.a_a', '2.146830437604321.aecbsjk_gggsrulyzas', 8], ['2.59.a_ch', '2.1779197418239532716881.avaeolglw_gjmngpymlhtzwiqg', 12]]}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 52504
{'base_label': '2.59.a_eo', 'extension_degree': 1, 'extension_label': '1.59.a', 'multiplicity': 2}
-
id: 52505
{'base_label': '2.59.a_eo', 'extension_degree': 2, 'extension_label': '1.3481.eo', 'multiplicity': 2}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0'], 'center': '2.0.59.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.59.a', 'galois_group': '2T1', 'places': [['29', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['1/2'], 'center': '1.1.1.1', 'center_dim': 1, 'divalg_dim': 4, 'extension_label': '1.3481.eo', 'galois_group': '1T1', 'places': [['0']]}