-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 1440, 'abvar_counts': [1440, 4838400, 10839618720, 23837829120000, 52604614020247200, 116191855409151513600, 256666975253996314776480, 566977454963171156459520000, 1252453075192867082464142508960, 2766668728070394039372991378560000], 'abvar_counts_str': '1440 4838400 10839618720 23837829120000 52604614020247200 116191855409151513600 256666975253996314776480 566977454963171156459520000 1252453075192867082464142508960 2766668728070394039372991378560000 ', 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.160736311099588, 0.301698511018155], 'center_dim': 4, 'cohen_macaulay_max': 3, 'curve_count': 28, 'curve_counts': [28, 2190, 104404, 4885118, 229368908, 10779249870, 506623098884, 23811290125438, 1119130526148988, 52599132542071950], 'curve_counts_str': '28 2190 104404 4885118 229368908 10779249870 506623098884 23811290125438 1119130526148988 52599132542071950 ', 'curves': ['y^2=30*x^6+43*x^5+34*x^4+34*x^3+33*x^2+5*x+24', 'y^2=2*x^6+28*x^5+21*x^4+4*x^3+2*x^2+x+8', 'y^2=27*x^6+9*x^5+45*x^3+16*x+17', 'y^2=23*x^6+43*x^5+18*x^4+43*x^3+34*x^2+13*x+22', 'y^2=5*x^6+21*x^5+14*x^4+25*x^3+14*x^2+21*x+5', 'y^2=26*x^6+6*x^5+14*x^4+2*x^3+23*x^2+21*x+5', 'y^2=6*x^6+28*x^5+6*x^4+8*x^3+6*x^2+28*x+6', 'y^2=46*x^6+2*x^5+22*x^4+3*x^3+22*x^2+2*x+46', 'y^2=45*x^6+x^5+19*x^4+5*x^3+19*x^2+x+45', 'y^2=20*x^6+11*x^5+36*x^4+18*x^3+36*x^2+11*x+20', 'y^2=24*x^6+13*x^5+38*x^4+43*x^3+38*x^2+13*x+24', 'y^2=19*x^6+6*x^5+7*x^4+39*x^3+16*x^2+14*x+43', 'y^2=3*x^6+42*x^5+46*x^4+19*x^3+30*x^2+12*x+28', 'y^2=38*x^6+7*x^5+45*x^4+26*x^3+13*x^2+2*x+10', 'y^2=29*x^6+26*x^5+39*x^4+23*x^3+39*x^2+26*x+29', 'y^2=43*x^6+38*x^5+2*x^4+5*x^3+2*x^2+38*x+43', 'y^2=27*x^6+6*x^5+13*x^4+16*x^3+46*x^2+17*x+14', 'y^2=23*x^6+21*x^5+27*x^4+27*x^2+21*x+23', 'y^2=4*x^6+x^5+11*x^3+21*x+28', 'y^2=35*x^6+29*x^5+5*x^4+46*x^3+14*x^2+7*x+6', 'y^2=30*x^6+41*x^5+10*x^4+24*x^3+10*x^2+41*x+30', 'y^2=25*x^6+19*x^5+29*x^4+25*x^3+44*x^2+11*x+23', 'y^2=9*x^6+32*x^5+16*x^4+38*x^3+16*x^2+32*x+9', 'y^2=43*x^6+x^5+32*x^4+42*x^3+4*x^2+21*x+26', 'y^2=33*x^6+13*x^5+29*x^3+23*x^2+45*x+26', 'y^2=26*x^6+11*x^5+28*x^4+25*x^3+27*x^2+20*x+23', 'y^2=23*x^6+8*x^5+39*x^4+30*x^3+10*x^2+36*x+41', 'y^2=10*x^6+45*x^5+5*x^4+32*x^3+5*x^2+45*x+10', 'y^2=25*x^6+6*x^5+38*x^4+25*x^3+7*x^2+35*x+31', 'y^2=13*x^6+36*x^5+8*x^4+23*x^3+42*x^2+17*x+43', 'y^2=41*x^6+11*x^5+24*x^3+18*x^2+x+38', 'y^2=29*x^6+40*x^5+26*x^4+9*x^3+20*x^2+22*x+43', 'y^2=33*x^6+11*x^5+x^4+x^3+32*x^2+31*x+15', 'y^2=23*x^6+16*x^5+45*x^4+43*x^3+41*x^2+44*x+5', 'y^2=16*x^6+8*x^5+36*x^4+7*x^3+23*x^2+38*x+23', 'y^2=26*x^6+7*x^5+8*x^4+44*x^3+8*x^2+7*x+26', 'y^2=31*x^6+15*x^5+42*x^4+35*x^3+5*x^2+40*x+2', 'y^2=43*x^6+26*x^5+34*x^4+x^3+34*x^2+26*x+43', 'y^2=6*x^6+4*x^5+20*x^4+20*x^3+7*x^2+38*x+12', 'y^2=22*x^6+39*x^5+25*x^4+24*x^3+16*x^2+17*x+36', 'y^2=30*x^6+12*x^5+38*x^4+35*x^3+38*x^2+12*x+30', 'y^2=46*x^6+29*x^5+9*x^4+9*x^3+9*x^2+29*x+46', 'y^2=11*x^6+41*x^5+40*x^4+30*x^3+40*x^2+41*x+11', 'y^2=31*x^6+11*x^5+27*x^4+15*x^3+46*x^2+12*x', 'y^2=38*x^6+23*x^5+46*x^4+x^3+44*x^2+19*x+39', 'y^2=15*x^6+3*x^5+35*x^4+38*x^3+23*x^2+29*x+29', 'y^2=15*x^6+14*x^5+33*x^3+14*x+15', 'y^2=19*x^6+44*x^5+21*x^4+3*x^3+7*x^2+21*x+31', 'y^2=41*x^6+35*x^5+28*x^4+27*x^3+8*x^2+23*x+10', 'y^2=13*x^6+13*x^5+27*x^4+34*x^3+37*x^2+15*x+31', 'y^2=39*x^6+21*x^5+38*x^4+31*x^3+6*x^2+40*x+44', 'y^2=15*x^6+45*x^5+18*x^4+13*x^3+14*x^2+22*x+44', 'y^2=19*x^6+4*x^5+36*x^4+21*x^3+4*x^2+25*x+38', 'y^2=26*x^6+45*x^5+17*x^4+9*x^3+32*x^2+23*x+15'], 'dim1_distinct': 2, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 14, 'g': 2, 'galois_groups': ['2T1', '2T1'], 'geom_dim1_distinct': 2, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['2T1', '2T1'], 'geometric_number_fields': ['2.0.11.1', '2.0.31.1'], 'geometric_splitting_field': '4.0.116281.1', 'geometric_splitting_polynomials': [[25, 0, 21, 0, 1]], 'group_structure_count': 6, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 54, 'is_geometrically_simple': False, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': False, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 54, 'label': '2.47.au_hi', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['2.0.11.1', '2.0.31.1'], 'p': 47, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, -20, 190, -940, 2209], 'poly_str': '1 -20 190 -940 2209 ', 'primitive_models': [], 'q': 47, 'real_poly': [1, -20, 96], 'simple_distinct': ['1.47.am', '1.47.ai'], 'simple_factors': ['1.47.amA', '1.47.aiA'], 'simple_multiplicities': [1, 1], 'singular_primes': ['2,9*F-7'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.116281.1', 'splitting_polynomials': [[25, 0, 21, 0, 1]], 'twist_count': 4, 'twists': [['2.47.ae_ac', '2.2209.au_eig', 2], ['2.47.e_ac', '2.2209.au_eig', 2], ['2.47.u_hi', '2.2209.au_eig', 2]], 'weak_equivalence_count': 24, 'zfv_index': 64, 'zfv_index_factorization': [[2, 6]], 'zfv_is_bass': False, 'zfv_is_maximal': False, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 5456, 'zfv_singular_count': 2, 'zfv_singular_primes': ['2,9*F-7']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 37881
{'base_label': '2.47.au_hi', 'extension_degree': 1, 'extension_label': '1.47.am', 'multiplicity': 1}
-
id: 37882
{'base_label': '2.47.au_hi', 'extension_degree': 1, 'extension_label': '1.47.ai', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.11.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.47.am', 'galois_group': '2T1', 'places': [['20', '1'], ['26', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.31.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.47.ai', 'galois_group': '2T1', 'places': [['21', '1'], ['25', '1']]}