Invariants
Base field: | $\F_{47}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 12 x + 47 x^{2} )( 1 - 8 x + 47 x^{2} )$ |
$1 - 20 x + 190 x^{2} - 940 x^{3} + 2209 x^{4}$ | |
Frobenius angles: | $\pm0.160736311100$, $\pm0.301698511018$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $54$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1440$ | $4838400$ | $10839618720$ | $23837829120000$ | $52604614020247200$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $28$ | $2190$ | $104404$ | $4885118$ | $229368908$ | $10779249870$ | $506623098884$ | $23811290125438$ | $1119130526148988$ | $52599132542071950$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 54 curves (of which all are hyperelliptic):
- $y^2=30 x^6+43 x^5+34 x^4+34 x^3+33 x^2+5 x+24$
- $y^2=2 x^6+28 x^5+21 x^4+4 x^3+2 x^2+x+8$
- $y^2=27 x^6+9 x^5+45 x^3+16 x+17$
- $y^2=23 x^6+43 x^5+18 x^4+43 x^3+34 x^2+13 x+22$
- $y^2=5 x^6+21 x^5+14 x^4+25 x^3+14 x^2+21 x+5$
- $y^2=26 x^6+6 x^5+14 x^4+2 x^3+23 x^2+21 x+5$
- $y^2=6 x^6+28 x^5+6 x^4+8 x^3+6 x^2+28 x+6$
- $y^2=46 x^6+2 x^5+22 x^4+3 x^3+22 x^2+2 x+46$
- $y^2=45 x^6+x^5+19 x^4+5 x^3+19 x^2+x+45$
- $y^2=20 x^6+11 x^5+36 x^4+18 x^3+36 x^2+11 x+20$
- $y^2=24 x^6+13 x^5+38 x^4+43 x^3+38 x^2+13 x+24$
- $y^2=19 x^6+6 x^5+7 x^4+39 x^3+16 x^2+14 x+43$
- $y^2=3 x^6+42 x^5+46 x^4+19 x^3+30 x^2+12 x+28$
- $y^2=38 x^6+7 x^5+45 x^4+26 x^3+13 x^2+2 x+10$
- $y^2=29 x^6+26 x^5+39 x^4+23 x^3+39 x^2+26 x+29$
- $y^2=43 x^6+38 x^5+2 x^4+5 x^3+2 x^2+38 x+43$
- $y^2=27 x^6+6 x^5+13 x^4+16 x^3+46 x^2+17 x+14$
- $y^2=23 x^6+21 x^5+27 x^4+27 x^2+21 x+23$
- $y^2=4 x^6+x^5+11 x^3+21 x+28$
- $y^2=35 x^6+29 x^5+5 x^4+46 x^3+14 x^2+7 x+6$
- and 34 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47}$.
Endomorphism algebra over $\F_{47}$The isogeny class factors as 1.47.am $\times$ 1.47.ai and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.47.ae_ac | $2$ | (not in LMFDB) |
2.47.e_ac | $2$ | (not in LMFDB) |
2.47.u_hi | $2$ | (not in LMFDB) |