Properties

Label 2.47.au_hi
Base field $\F_{47}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{47}$
Dimension:  $2$
L-polynomial:  $( 1 - 12 x + 47 x^{2} )( 1 - 8 x + 47 x^{2} )$
  $1 - 20 x + 190 x^{2} - 940 x^{3} + 2209 x^{4}$
Frobenius angles:  $\pm0.160736311100$, $\pm0.301698511018$
Angle rank:  $2$ (numerical)
Jacobians:  $54$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1440$ $4838400$ $10839618720$ $23837829120000$ $52604614020247200$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $28$ $2190$ $104404$ $4885118$ $229368908$ $10779249870$ $506623098884$ $23811290125438$ $1119130526148988$ $52599132542071950$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 54 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{47}$.

Endomorphism algebra over $\F_{47}$
The isogeny class factors as 1.47.am $\times$ 1.47.ai and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.47.ae_ac$2$(not in LMFDB)
2.47.e_ac$2$(not in LMFDB)
2.47.u_hi$2$(not in LMFDB)