-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 2224, 'abvar_counts': [2224, 4946176, 10779125296, 23852518281216, 52599132547638064, 116189542146867087616, 256666986186790293098416, 566976988368708122065305600, 1252453015827225273309249690544, 2766668744763997933028345141668096], 'abvar_counts_str': '2224 4946176 10779125296 23852518281216 52599132547638064 116189542146867087616 256666986186790293098416 566976988368708122065305600 1252453015827225273309249690544 2766668744763997933028345141668096 ', 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.273792447520974, 0.726207552479026], 'center_dim': 4, 'cohen_macaulay_max': 3, 'curve_count': 48, 'curve_counts': [48, 2238, 103824, 4888126, 229345008, 10779035262, 506623120464, 23811270529918, 1119130473102768, 52599132859446078], 'curve_counts_str': '48 2238 103824 4888126 229345008 10779035262 506623120464 23811270529918 1119130473102768 52599132859446078 ', 'curves': ['y^2=15*x^6+36*x^5+18*x^4+35*x^3+37*x^2+43*x+22', 'y^2=28*x^6+39*x^5+43*x^4+34*x^3+44*x^2+27*x+16', 'y^2=9*x^6+40*x^5+11*x^4+42*x^2+4*x+26', 'y^2=45*x^6+12*x^5+8*x^4+22*x^2+20*x+36', 'y^2=11*x^6+5*x^5+3*x^4+29*x^3+10*x^2+19*x', 'y^2=2*x^6+11*x^5+44*x^4+39*x^3+10*x^2+29*x+37', 'y^2=10*x^6+8*x^5+32*x^4+7*x^3+3*x^2+4*x+44', 'y^2=4*x^6+37*x^5+15*x^4+17*x^3+14*x^2+8*x+39', 'y^2=11*x^6+21*x^5+21*x^4+22*x^3+42*x+6', 'y^2=6*x^6+40*x^5+28*x^4+37*x^3+20*x^2+29*x+30', 'y^2=30*x^6+12*x^5+46*x^4+44*x^3+6*x^2+4*x+9', 'y^2=14*x^6+21*x^5+45*x^4+8*x^3+10*x^2+14*x+1', 'y^2=38*x^6+13*x^5+33*x^4+4*x^3+34*x^2+16*x+35', 'y^2=36*x^6+30*x^5+17*x^4+18*x^3+28*x^2+36*x+33', 'y^2=39*x^6+9*x^5+38*x^4+43*x^3+46*x^2+39*x+24', 'y^2=26*x^6+33*x^5+16*x^4+3*x^3+46*x^2+19*x+35', 'y^2=13*x^6+45*x^5+16*x^4+11*x^3+20*x^2+19*x+11', 'y^2=18*x^6+37*x^5+33*x^4+8*x^3+6*x^2+x+8', 'y^2=5*x^6+40*x^5+35*x^4+45*x^3+18*x^2+43*x+36', 'y^2=33*x^6+12*x^5+13*x^4+4*x^3+37*x^2+16*x+24', 'y^2=39*x^6+41*x^5+45*x^4+23*x^3+x^2+4*x+46', 'y^2=20*x^6+25*x^5+16*x^4+38*x^3+10*x^2+30*x', 'y^2=11*x^5+36*x^4+36*x^3+33*x^2+5*x', 'y^2=46*x^6+15*x^5+10*x^4+32*x^3+24*x^2+34*x+46', 'y^2=41*x^6+28*x^5+36*x^4+34*x^3+40*x^2+20*x+36', 'y^2=17*x^6+46*x^5+39*x^4+29*x^3+12*x^2+6*x+39', 'y^2=17*x^6+31*x^5+39*x^4+11*x^3+42*x^2+2*x+7', 'y^2=38*x^6+14*x^5+7*x^4+8*x^3+22*x^2+10*x+35', 'y^2=36*x^6+36*x^5+13*x^4+10*x^3+17*x^2+9*x+19', 'y^2=16*x^6+30*x^5+27*x^4+4*x^3+20*x^2+23', 'y^2=33*x^6+9*x^5+41*x^4+20*x^3+6*x^2+21', 'y^2=12*x^6+42*x^5+29*x^4+16*x^3+7*x^2+2*x+5', 'y^2=26*x^6+37*x^5+44*x^4+16*x^3+45*x^2+46*x+30', 'y^2=36*x^6+44*x^5+32*x^4+33*x^3+37*x^2+42*x+9', 'y^2=12*x^6+16*x^5+19*x^4+42*x^3+16*x^2+19*x+22', 'y^2=13*x^6+33*x^5+x^4+22*x^3+33*x^2+x+16', 'y^2=17*x^6+32*x^5+5*x^4+3*x^3+27*x^2+42*x+40', 'y^2=28*x^6+x^5+28*x^4+18*x^3+11*x^2+26*x+24', 'y^2=46*x^6+5*x^5+46*x^4+43*x^3+8*x^2+36*x+26', 'y^2=16*x^6+16*x^5+3*x^4+10*x^3+38*x^2+3*x+38', 'y^2=17*x^6+38*x^5+42*x^4+25*x^3+28*x^2+31*x+45', 'y^2=38*x^6+2*x^5+22*x^4+31*x^3+46*x^2+14*x+37', 'y^2=26*x^6+34*x^5+20*x^4+33*x^3+40*x^2+18*x+5', 'y^2=36*x^6+29*x^5+6*x^4+24*x^3+12*x^2+43*x+25', 'y^2=40*x^6+44*x^5+23*x^4+25*x^3+7*x^2+23*x+32', 'y^2=13*x^6+27*x^5+30*x^4+36*x^3+45*x^2+4*x+10', 'y^2=12*x^6+28*x^5+x^4+44*x^3+34*x^2+15*x+7', 'y^2=13*x^6+46*x^5+5*x^4+32*x^3+29*x^2+28*x+35', 'y^2=22*x^6+29*x^5+17*x^4+16*x^3+40*x^2+15*x+14', 'y^2=21*x^6+18*x^5+40*x^4+7*x^3+2*x^2+9*x+35', 'y^2=11*x^6+43*x^5+12*x^4+35*x^3+10*x^2+45*x+34', 'y^2=44*x^6+25*x^5+21*x^4+36*x^3+12*x^2+41*x+9', 'y^2=32*x^6+31*x^5+11*x^4+39*x^3+13*x^2+17*x+45', 'y^2=22*x^6+6*x^5+46*x^4+19*x^3+38*x^2+33*x+39', 'y^2=37*x^6+24*x^5+17*x^4+28*x^3+43*x^2+28*x+35', 'y^2=14*x^6+12*x^5+19*x^4+34*x^3+17*x^2+20*x+23', 'y^2=23*x^6+13*x^5+x^4+29*x^3+38*x^2+6*x+21', 'y^2=11*x^6+22*x^5+29*x^4+41*x^3+35*x^2+23*x+22', 'y^2=16*x^6+25*x^5+41*x^4+5*x^2+5*x+38', 'y^2=33*x^6+31*x^5+17*x^4+25*x^2+25*x+2', 'y^2=7*x^6+45*x^5+15*x^4+28*x^3+25*x^2+31*x+15', 'y^2=34*x^6+29*x^5+4*x^4+20*x^3+15*x^2+27*x+43', 'y^2=29*x^6+31*x^5+34*x^4+13*x^3+14*x^2+26*x+5', 'y^2=4*x^6+14*x^5+29*x^4+18*x^3+23*x^2+36*x+25', 'y^2=7*x^6+16*x^5+37*x^4+3*x^3+2*x^2+20*x+23', 'y^2=35*x^6+33*x^5+44*x^4+15*x^3+10*x^2+6*x+21', 'y^2=2*x^6+43*x^5+29*x^4+15*x^3+12*x^2+26', 'y^2=10*x^6+27*x^5+4*x^4+28*x^3+13*x^2+36', 'y^2=43*x^6+7*x^5+12*x^4+4*x^3+23*x^2+38*x+42', 'y^2=27*x^6+35*x^5+13*x^4+20*x^3+21*x^2+2*x+22', 'y^2=28*x^6+27*x^5+46*x^4+3*x^3+37*x^2+21*x+35', 'y^2=44*x^6+17*x^5+4*x^4+9*x^3+13*x^2+18*x+27', 'y^2=39*x^6+18*x^5+34*x^4+16*x^3+17*x^2+29*x+5', 'y^2=7*x^6+43*x^5+29*x^4+33*x^3+38*x^2+4*x+25', 'y^2=32*x^6+18*x^5+34*x^4+4*x^3+19*x^2+19*x+31', 'y^2=19*x^6+43*x^5+29*x^4+20*x^3+x^2+x+14', 'y^2=37*x^6+37*x^5+22*x^4+21*x^3+23*x^2+4*x+16', 'y^2=31*x^6+7*x^5+20*x^4+28*x^3+10*x^2+19*x+23', 'y^2=14*x^6+35*x^5+6*x^4+46*x^3+3*x^2+x+21', 'y^2=46*x^6+40*x^5+11*x^4+x^3+46*x+12', 'y^2=41*x^6+42*x^5+20*x^4+43*x^3+33*x^2+19*x+6', 'y^2=20*x^6+43*x^5+17*x^4+36*x^3+9*x^2+8*x+19', 'y^2=29*x^6+45*x^5+7*x^4+35*x^3+31*x^2+26*x+9', 'y^2=33*x^6+17*x^5+18*x^4+14*x^3+12*x+25', 'y^2=24*x^6+38*x^5+43*x^4+23*x^3+13*x+31', 'y^2=31*x^6+36*x^5+12*x^4+40*x^3+31*x^2+3*x+37', 'y^2=33*x^6+45*x^5+15*x^4+12*x^3+33*x^2+6*x+37', 'y^2=24*x^6+37*x^5+28*x^4+13*x^3+24*x^2+30*x+44', 'y^2=23*x^6+4*x^5+10*x^4+27*x^3+36*x^2+18*x+6', 'y^2=7*x^6+27*x^5+40*x^4+16*x^3+19*x^2+29*x+36', 'y^2=12*x^6+27*x^5+14*x^4+26*x^3+40*x^2+45*x+39', 'y^2=13*x^6+41*x^5+23*x^4+36*x^3+12*x^2+37*x+7', 'y^2=20*x^6+17*x^5+17*x^4+11*x^3+15*x^2+36*x+7', 'y^2=6*x^6+38*x^5+38*x^4+8*x^3+28*x^2+39*x+35', 'y^2=33*x^6+12*x^5+31*x^4+15*x^2+4*x+13', 'y^2=24*x^6+13*x^5+14*x^4+28*x^2+20*x+18', 'y^2=25*x^6+42*x^5+26*x^4+40*x^3+5*x^2+3*x+41', 'y^2=31*x^6+22*x^5+36*x^4+12*x^3+25*x^2+15*x+17', 'y^2=41*x^6+34*x^5+29*x^4+32*x^3+11*x^2+39*x+36', 'y^2=17*x^6+29*x^5+4*x^4+19*x^3+8*x^2+7*x+39', 'y^2=41*x^6+39*x^5+20*x^4+6*x^3+15*x^2+45*x+17', 'y^2=17*x^6+7*x^5+6*x^4+30*x^3+28*x^2+37*x+38', 'y^2=34*x^6+42*x^5+7*x^4+29*x^3+21*x^2+27*x+4', 'y^2=37*x^6+33*x^5+39*x^4+36*x^3+28*x^2+39*x+24', 'y^2=23*x^6+16*x^5+40*x^4+43*x^3+46*x^2+7', 'y^2=46*x^6+34*x^5+11*x^4+20*x^3+8*x^2+4*x+16', 'y^2=2*x^6+12*x^5+13*x^4+46*x^3+17*x^2+3*x+35', 'y^2=43*x^6+16*x^5+40*x^4+3*x^3+9*x^2+5*x+28', 'y^2=27*x^6+33*x^5+12*x^4+15*x^3+45*x^2+25*x+46', 'y^2=7*x^6+20*x^5+18*x^4+7*x^3+35*x^2+35*x+31', 'y^2=44*x^6+24*x^5+27*x^4+16*x^3+2*x^2+15*x+35', 'y^2=32*x^6+26*x^5+41*x^4+33*x^3+10*x^2+28*x+34', 'y^2=15*x^6+7*x^5+10*x^4+43*x^3+18*x^2+11', 'y^2=28*x^6+35*x^5+3*x^4+27*x^3+43*x^2+8', 'y^2=29*x^6+18*x^5+22*x^4+7*x^3+36*x^2+10*x+43', 'y^2=4*x^6+43*x^5+16*x^4+35*x^3+39*x^2+3*x+27', 'y^2=9*x^6+28*x^5+40*x^4+26*x^3+45*x^2+42*x+21', 'y^2=45*x^6+46*x^5+12*x^4+36*x^3+37*x^2+22*x+11', 'y^2=31*x^6+46*x^5+6*x^4+14*x^3+12*x^2+38*x+7', 'y^2=20*x^6+2*x^5+24*x^4+42*x^3+2*x^2+13*x+23', 'y^2=5*x^6+8*x^5+20*x^4+45*x^3+11*x^2+16*x+36', 'y^2=25*x^6+40*x^5+6*x^4+37*x^3+8*x^2+33*x+39', 'y^2=17*x^6+43*x^5+35*x^4+24*x^3+20*x+9', 'y^2=38*x^6+27*x^5+34*x^4+26*x^3+6*x+45', 'y^2=23*x^6+22*x^5+44*x^4+9*x^3+30*x^2+16*x+10', 'y^2=13*x^6+5*x^5+6*x^4+42*x^3+33*x^2+10*x+42', 'y^2=18*x^6+25*x^5+30*x^4+22*x^3+24*x^2+3*x+22', 'y^2=44*x^6+22*x^5+8*x^4+2*x^3+18*x^2+3*x+10', 'y^2=32*x^6+16*x^5+40*x^4+10*x^3+43*x^2+15*x+3', 'y^2=31*x^6+9*x^5+36*x^4+8*x^3+33*x+9', 'y^2=14*x^6+45*x^5+39*x^4+40*x^3+24*x+45', 'y^2=25*x^6+37*x^5+37*x^4+26*x^3+39*x^2+39*x+39', 'y^2=31*x^6+44*x^5+44*x^4+36*x^3+7*x^2+7*x+7', 'y^2=7*x^6+28*x^5+45*x^4+33*x^3+42*x^2+12*x+15', 'y^2=35*x^6+46*x^5+37*x^4+24*x^3+22*x^2+13*x+28', 'y^2=19*x^6+38*x^5+27*x^4+18*x^3+20*x^2+27*x+29', 'y^2=x^6+2*x^5+41*x^4+43*x^3+6*x^2+41*x+4', 'y^2=6*x^6+41*x^5+34*x^4+22*x^3+44*x^2+35*x+10', 'y^2=8*x^5+5*x^4+8*x^3+28*x^2+14*x', 'y^2=4*x^6+41*x^5+41*x^4+25*x^3+36*x^2+19*x+29', 'y^2=38*x^6+17*x^5+4*x^4+19*x^3+38*x^2+42*x+21', 'y^2=x^6+26*x^5+36*x^4+8*x^3+23*x^2+43*x+29', 'y^2=26*x^6+33*x^5+26*x^4+27*x^3+8*x^2+30*x+9', 'y^2=36*x^6+24*x^5+36*x^4+41*x^3+40*x^2+9*x+45', 'y^2=13*x^6+22*x^5+6*x^4+3*x^3+8*x^2+42*x+25', 'y^2=18*x^6+16*x^5+30*x^4+15*x^3+40*x^2+22*x+31', 'y^2=6*x^6+37*x^5+30*x^4+38*x^3+44*x^2+24*x+3', 'y^2=30*x^6+44*x^5+9*x^4+2*x^3+32*x^2+26*x+15', 'y^2=25*x^6+40*x^5+24*x^4+38*x^3+30*x^2+25*x+6', 'y^2=35*x^6+41*x^5+39*x^4+33*x^3+45*x^2+40*x+44', 'y^2=34*x^6+17*x^5+7*x^4+24*x^3+37*x^2+12*x+32', 'y^2=2*x^6+40*x^5+25*x^4+20*x^3+33*x^2+43*x+5', 'y^2=44*x^6+12*x^5+15*x^4+34*x^2+4*x+4', 'y^2=27*x^6+45*x^5+39*x^4+6*x^3+30*x^2+7*x+45', 'y^2=41*x^6+37*x^5+7*x^4+30*x^3+9*x^2+35*x+37', 'y^2=11*x^6+18*x^5+25*x^4+5*x^3+19*x^2+16*x+1', 'y^2=8*x^6+43*x^5+31*x^4+25*x^3+x^2+33*x+5', 'y^2=40*x^6+16*x^5+31*x^4+46*x^3+25*x^2+17*x+6', 'y^2=14*x^6+39*x^5+34*x^4+15*x^3+24*x^2+25*x+30', 'y^2=22*x^6+2*x^5+40*x^4+12*x^3+14*x^2+8*x+12', 'y^2=12*x^6+10*x^5+30*x^4+30*x^3+32*x^2+26*x+22', 'y^2=24*x^6+36*x^5+33*x^4+35*x^3+42*x^2+42*x+10', 'y^2=23*x^6+44*x^5+18*x^4+28*x^3+21*x^2+16*x+24', 'y^2=21*x^6+32*x^5+43*x^4+46*x^3+11*x^2+33*x+26', 'y^2=6*x^6+39*x^5+28*x^4+25*x^3+33*x^2+45*x+11', 'y^2=7*x^6+27*x^5+40*x^4+38*x^3+4*x^2+28*x+15', 'y^2=39*x^6+23*x^5+28*x^4+36*x^3+42*x^2+15*x+32', 'y^2=5*x^5+39*x^4+20*x^3+39*x^2+2*x+26', 'y^2=25*x^5+7*x^4+6*x^3+7*x^2+10*x+36', 'y^2=44*x^6+10*x^5+35*x^4+26*x^3+25*x^2+31*x+37', 'y^2=11*x^6+38*x^5+4*x^4+39*x^3+x^2+33*x+31', 'y^2=8*x^6+2*x^5+20*x^4+7*x^3+5*x^2+24*x+14', 'y^2=26*x^6+10*x^5+5*x^4+16*x^3+42*x^2+17*x+10', 'y^2=36*x^6+3*x^5+25*x^4+33*x^3+22*x^2+38*x+3', 'y^2=37*x^6+9*x^5+7*x^4+45*x^3+8*x^2+19*x+42', 'y^2=44*x^6+45*x^5+35*x^4+37*x^3+40*x^2+x+22', 'y^2=14*x^6+45*x^5+16*x^4+44*x^3+44*x^2+26*x+40', 'y^2=3*x^6+14*x^5+43*x^4+29*x^3+11*x^2+24*x+5', 'y^2=15*x^6+23*x^5+27*x^4+4*x^3+8*x^2+26*x+25', 'y^2=45*x^6+43*x^5+35*x^4+9*x^3+7*x^2+13*x+6', 'y^2=8*x^6+2*x^5+37*x^4+20*x^3+39*x^2+37*x+15', 'y^2=32*x^6+27*x^5+12*x^4+7*x^3+9*x^2+10*x+43', 'y^2=36*x^6+24*x^5+7*x^4+30*x^3+8*x^2+5*x+40', 'y^2=39*x^6+26*x^5+35*x^4+9*x^3+40*x^2+25*x+12'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 34, 'g': 2, 'galois_groups': ['4T2'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 2, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.15.1'], 'geometric_splitting_field': '2.0.15.1', 'geometric_splitting_polynomials': [[4, -1, 1]], 'group_structure_count': 5, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 184, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 184, 'label': '2.47.a_o', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 6, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.225.1'], 'p': 47, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, 0, 14, 0, 2209], 'poly_str': '1 0 14 0 2209 ', 'primitive_models': [], 'q': 47, 'real_poly': [1, 0, -80], 'simple_distinct': ['2.47.a_o'], 'simple_factors': ['2.47.a_oA'], 'simple_multiplicities': [1], 'singular_primes': ['2,-F^2+F-4', '3,7*F^2-6*V-8'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.225.1', 'splitting_polynomials': [[1, 1, 2, -1, 1]], 'twist_count': 4, 'twists': [['2.47.as_fz', '2.103823.a_afdew', 3], ['2.47.s_fz', '2.103823.a_afdew', 3], ['2.47.a_ao', '2.4879681.mmu_cijlry', 4], ['2.47.s_fz', '2.10779215329.akgjs_dsasxlco', 6]], 'weak_equivalence_count': 46, 'zfv_index': 2304, 'zfv_index_factorization': [[2, 8], [3, 2]], 'zfv_is_bass': False, 'zfv_is_maximal': False, 'zfv_plus_index': 8, 'zfv_plus_index_factorization': [[2, 3]], 'zfv_plus_norm': 11664, 'zfv_singular_count': 4, 'zfv_singular_primes': ['2,-F^2+F-4', '3,7*F^2-6*V-8']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 35398
{'base_label': '2.47.a_o', 'extension_degree': 1, 'extension_label': '2.47.a_o', 'multiplicity': 1}
-
id: 35399
{'base_label': '2.47.a_o', 'extension_degree': 2, 'extension_label': '1.2209.o', 'multiplicity': 2}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '4.0.225.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.47.a_o', 'galois_group': '4T2', 'places': [['37', '28', '21', '13'], ['28', '36', '12', '41']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.15.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.2209.o', 'galois_group': '2T1', 'places': [['37', '1'], ['9', '1']]}