-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 2108, 'abvar_counts': [2108, 3701648, 6289346588, 11675175471104, 21613764592576188, 39959923625750354576, 73885342230255937279004, 136614035104493837270417408, 252599315821672965065387378492, 467056167764862982177844541068688], 'abvar_counts_str': '2108 3701648 6289346588 11675175471104 21613764592576188 39959923625750354576 73885342230255937279004 136614035104493837270417408 252599315821672965065387378492 467056167764862982177844541068688 ', 'all_polarized_product': False, 'all_unpolarized_product': False, 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.479879931808127, 0.620013544906829], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 48, 'curve_counts': [48, 1998, 79104, 3414990, 147023968, 6321409374, 271818555504, 11688201079710, 502592576616336, 21611482312704238], 'curve_counts_str': '48 1998 79104 3414990 147023968 6321409374 271818555504 11688201079710 502592576616336 21611482312704238 ', 'curves': ['y^2=38*x^6+10*x^5+12*x^4+16*x^3+26*x^2+9*x+2', 'y^2=25*x^6+21*x^5+36*x^4+13*x^3+23*x^2+25*x+7', 'y^2=14*x^6+2*x^5+x^4+40*x^3+36*x^2+17*x+15', 'y^2=36*x^6+30*x^5+42*x^4+32*x^3+19*x^2+36*x+33', 'y^2=8*x^6+17*x^5+25*x^4+10*x^3+29*x^2+x+35', 'y^2=26*x^6+39*x^5+4*x^3+28*x^2+28*x+14', 'y^2=21*x^6+14*x^5+4*x^4+32*x^3+x^2+5*x+37', 'y^2=18*x^6+37*x^5+15*x^4+32*x^3+23*x^2+25*x+35', 'y^2=6*x^6+18*x^5+41*x^4+16*x^3+28*x^2+6*x', 'y^2=26*x^6+19*x^5+5*x^4+x^3+x^2+31*x+16', 'y^2=15*x^6+40*x^5+34*x^4+10*x^3+19*x^2+30', 'y^2=32*x^6+3*x^5+24*x^4+7*x^3+41*x^2+7*x+16', 'y^2=2*x^6+4*x^5+13*x^4+39*x^3+20*x^2+17*x+4', 'y^2=40*x^5+41*x^4+17*x^3+6*x^2+38*x+14', 'y^2=35*x^6+16*x^5+6*x^4+28*x^3+42*x^2+24*x+18', 'y^2=14*x^6+36*x^5+4*x^4+6*x^3+20*x^2+30*x+19', 'y^2=19*x^6+19*x^5+25*x^4+29*x^3+28*x^2+32*x+41', 'y^2=10*x^6+32*x^5+3*x^3+4*x^2+19*x+38', 'y^2=12*x^6+19*x^5+14*x^4+9*x^3+23*x^2+33*x+31', 'y^2=23*x^6+27*x^5+3*x^4+16*x^3+9*x^2+30*x+32', 'y^2=40*x^6+36*x^5+27*x^4+15*x^3+33*x^2+31*x+27', 'y^2=9*x^6+7*x^5+14*x^4+42*x^3+x^2+11*x+24', 'y^2=9*x^5+31*x^4+13*x^3+36*x^2+4*x+22', 'y^2=36*x^6+42*x^5+34*x^4+22*x^3+33*x^2+x+28', 'y^2=38*x^6+25*x^5+12*x^4+37*x^3+21*x^2+38*x+5', 'y^2=17*x^6+35*x^5+35*x^4+28*x^3+37*x^2+20*x+15', 'y^2=x^6+40*x^5+32*x^4+14*x^3+4*x^2+7*x+18', 'y^2=35*x^6+17*x^5+10*x^4+16*x^3+14*x^2+32*x+4', 'y^2=3*x^6+20*x^5+11*x^4+19*x^3+15*x^2+2*x+23', 'y^2=11*x^6+28*x^4+8*x^3+12*x^2+41*x+16', 'y^2=3*x^6+24*x^5+20*x^4+39*x^3+41*x^2+34*x+6', 'y^2=19*x^6+30*x^5+26*x^3+28*x^2+35*x+42', 'y^2=3*x^6+3*x^5+22*x^4+24*x^3+3*x^2+41*x+23', 'y^2=15*x^6+7*x^5+15*x^4+3*x^3+15*x^2+28*x+2', 'y^2=9*x^6+28*x^5+20*x^4+15*x^3+8*x^2+16*x+27', 'y^2=34*x^6+38*x^5+35*x^4+34*x^3+7*x^2+17', 'y^2=5*x^6+31*x^5+7*x^4+17*x^3+2*x^2+x+38', 'y^2=14*x^6+31*x^5+39*x^4+18*x^3+21*x^2+x+7', 'y^2=24*x^6+x^5+34*x^4+17*x^3+11*x^2+2*x+5', 'y^2=39*x^6+39*x^5+30*x^4+7*x^3+22*x^2+11*x+10', 'y^2=15*x^6+37*x^5+7*x^3+42*x^2+6*x+17', 'y^2=25*x^6+6*x^5+30*x^4+36*x^3+26*x^2+8*x+27', 'y^2=7*x^6+x^5+7*x^4+35*x^3+3*x^2+31*x+22', 'y^2=25*x^6+x^5+8*x^4+24*x^3+22*x^2+28*x+7', 'y^2=7*x^6+10*x^5+11*x^4+21*x^3+3*x^2+8*x+15', 'y^2=13*x^6+6*x^5+16*x^4+7*x^3+37*x^2+15*x+15', 'y^2=29*x^6+31*x^5+29*x^4+31*x^3+27*x^2+38*x+24', 'y^2=26*x^6+2*x^5+9*x^4+10*x^3+26*x^2+31*x+41', 'y^2=14*x^6+42*x^5+36*x^4+38*x^3+22*x^2+22*x+20', 'y^2=4*x^6+24*x^5+14*x^4+41*x^3+9*x^2+23*x+30', 'y^2=26*x^6+7*x^5+38*x^4+39*x^3+8*x^2+19*x+13', 'y^2=15*x^6+12*x^5+28*x^4+42*x^3+20*x^2+16*x', 'y^2=x^6+35*x^5+11*x^4+20*x^3+2*x^2+24*x+13', 'y^2=38*x^6+23*x^5+2*x^4+41*x^3+3*x^2+35*x+36', 'y^2=5*x^6+2*x^4+18*x^3+6*x^2+41*x+38', 'y^2=20*x^6+41*x^5+22*x^4+13*x^3+4*x^2+33*x+33', 'y^2=27*x^6+8*x^5+18*x^4+23*x^3+22*x^2+14*x+41', 'y^2=24*x^6+41*x^5+40*x^4+36*x^3+42*x^2+42*x+23', 'y^2=36*x^6+16*x^5+40*x^4+26*x^3+10*x^2+31*x+11', 'y^2=17*x^6+35*x^5+8*x^4+38*x^3+19*x^2+2*x+9', 'y^2=5*x^6+2*x^5+35*x^4+28*x^3+40*x^2+10*x+27', 'y^2=39*x^6+18*x^5+14*x^4+33*x^3+40*x^2+23*x+30', 'y^2=13*x^6+35*x^5+7*x^4+20*x^3+x^2+17*x+32', 'y^2=9*x^6+36*x^5+5*x^4+39*x^3+14*x^2+29*x+9', 'y^2=18*x^6+32*x^5+11*x^4+38*x^3+2*x^2+40', 'y^2=36*x^6+26*x^5+3*x^4+2*x^3+36*x^2+17*x+2', 'y^2=9*x^6+14*x^5+24*x^4+5*x^3+35*x^2+36*x+36', 'y^2=13*x^6+12*x^5+21*x^4+32*x^3+5*x^2+16*x+10', 'y^2=42*x^6+11*x^5+13*x^4+40*x^3+25*x^2+40*x+39', 'y^2=6*x^6+20*x^5+8*x^4+10*x^3+11*x^2+18*x+40'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 4, 'g': 2, 'galois_groups': ['4T3'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T3'], 'geometric_number_fields': ['4.0.407552.1'], 'geometric_splitting_field': '4.0.407552.1', 'geometric_splitting_polynomials': [[398, 0, 40, 0, 1]], 'group_structure_count': 2, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 70, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 70, 'label': '2.43.e_de', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.407552.1'], 'p': 43, 'p_rank': 2, 'p_rank_deficit': 0, 'pic_prime_gens': [[1, 7, 1, 20], [1, 17, 1, 20]], 'poly': [1, 4, 82, 172, 1849], 'poly_str': '1 4 82 172 1849 ', 'primitive_models': [], 'principal_polarization_count': 70, 'q': 43, 'real_poly': [1, 4, -4], 'simple_distinct': ['2.43.e_de'], 'simple_factors': ['2.43.e_deA'], 'simple_multiplicities': [1], 'singular_primes': ['2,3*F+2*V+5'], 'size': 90, 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.407552.1', 'splitting_polynomials': [[398, 0, 40, 0, 1]], 'twist_count': 2, 'twists': [['2.43.ae_de', '2.1849.fs_njy', 2]], 'weak_equivalence_count': 4, 'zfv_index': 8, 'zfv_index_factorization': [[2, 3]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_pic_size': 40, 'zfv_plus_index': 2, 'zfv_plus_index_factorization': [[2, 1]], 'zfv_plus_norm': 25472, 'zfv_singular_count': 2, 'zfv_singular_primes': ['2,3*F+2*V+5']}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.43.e_de', 'extension_degree': 1, 'extension_label': '2.43.e_de', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '4.0.407552.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.43.e_de', 'galois_group': '4T3', 'places': [['11', '1', '22', '0'], ['32', '1', '21', '0']]}