-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 1161, 'abvar_counts': [1161, 976401, 887652999, 853793350029, 819110236748976, 787663397052231921, 756958963150827524331, 727422361528673002203189, 699053631675706753324504029, 671790485566273168392527390976], 'abvar_counts_str': '1161 976401 887652999 853793350029 819110236748976 787663397052231921 756958963150827524331 727422361528673002203189 699053631675706753324504029 671790485566273168392527390976 ', 'all_polarized_product': False, 'all_unpolarized_product': False, 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.415889879914565, 0.751390401855688], 'center_dim': 4, 'cohen_macaulay_max': 2, 'curve_count': 37, 'curve_counts': [37, 1015, 29797, 924499, 28611052, 887504371, 27513160327, 852890146099, 26439622602307, 819628234209550], 'curve_counts_str': '37 1015 29797 924499 28611052 887504371 27513160327 852890146099 26439622602307 819628234209550 ', 'curves': ['y^2=13*x^6+15*x^5+28*x^4+5*x^3+12*x^2+21*x+6', 'y^2=9*x^6+22*x^5+18*x^4+x^3+23*x^2+11*x+10', 'y^2=20*x^6+9*x^5+18*x^4+4*x^3+x^2+16*x', 'y^2=8*x^6+22*x^4+8*x^3+11*x^2+19*x+22', 'y^2=13*x^5+18*x^4+10*x^3+15*x^2+27*x+4', 'y^2=5*x^6+21*x^4+9*x^3+14*x^2+25*x+1', 'y^2=14*x^6+13*x^5+23*x^4+26*x^3+x^2+27*x+20', 'y^2=x^6+25*x^5+29*x^4+9*x^3+16*x^2+14*x+9', 'y^2=17*x^6+23*x^5+9*x^4+27*x^3+8*x^2+11*x+15', 'y^2=x^6+2*x^5+3*x^4+9*x^3+29*x^2+29*x+4', 'y^2=7*x^6+29*x^5+6*x^4+25*x^2+18*x+18', 'y^2=2*x^6+18*x^5+20*x^4+8*x^3+3*x^2+27*x+19', 'y^2=30*x^6+20*x^5+29*x^4+13*x^3+17*x^2+3*x+17', 'y^2=6*x^6+24*x^5+16*x^4+8*x^3+25*x^2+3*x+7', 'y^2=5*x^6+x^4+19*x^3+3*x^2+21*x+5', 'y^2=26*x^6+8*x^5+24*x^4+8*x^3+25*x^2+11*x+20', 'y^2=2*x^6+26*x^5+28*x^4+17*x^3+30*x^2+24*x+7', 'y^2=15*x^6+17*x^5+26*x^4+17*x^3+3*x^2+29*x', 'y^2=3*x^6+8*x^5+16*x^4+6*x^3+21*x^2+25*x+27', 'y^2=26*x^6+21*x^5+28*x^4+20*x^3+5*x^2+12*x+19', 'y^2=15*x^6+28*x^5+22*x^4+17*x^3+13*x+20', 'y^2=6*x^6+5*x^5+9*x^4+10*x^3+9*x^2+13*x+2', 'y^2=6*x^6+8*x^5+15*x^4+27*x^3+15*x^2+14*x+27', 'y^2=19*x^6+17*x^5+3*x^4+x^3+10*x^2+20*x+14', 'y^2=24*x^6+16*x^5+22*x^4+9*x+22', 'y^2=11*x^6+29*x^5+29*x^4+26*x^2+29', 'y^2=9*x^6+7*x^5+28*x^4+6*x^3+23*x^2+10*x+10', 'y^2=5*x^6+28*x^5+18*x^4+9*x^3+5*x^2+9*x+15', 'y^2=20*x^6+9*x^5+30*x^4+2*x^3+18*x^2+27*x+17', 'y^2=28*x^6+11*x^5+21*x^3+22*x^2+23*x+16', 'y^2=2*x^6+28*x^5+18*x^4+22*x^3+7*x^2+20*x+28', 'y^2=25*x^6+19*x^5+29*x^4+28*x^3+14*x^2+x+28', 'y^2=6*x^6+19*x^5+27*x^4+4*x^3+29*x^2+11*x+16', 'y^2=5*x^6+x^5+3*x^4+15*x^3+13*x^2+23*x+3', 'y^2=7*x^6+21*x^5+28*x^4+x^3+17*x^2+6*x+4', 'y^2=18*x^6+7*x^4+14*x^3+23*x^2+3*x+18', 'y^2=3*x^6+13*x^5+11*x^4+27*x^3+15*x^2+28*x+17', 'y^2=26*x^6+20*x^5+11*x^4+8*x^3+25*x^2+4*x+3', 'y^2=7*x^6+20*x^5+21*x^4+17*x^3+9*x^2+12*x+8', 'y^2=10*x^6+17*x^5+6*x^4+21*x^3+2*x^2+21*x+15', 'y^2=18*x^6+17*x^5+24*x^3+8*x^2+25*x+1', 'y^2=14*x^6+6*x^5+17*x^4+21*x^2+x+25', 'y^2=19*x^6+13*x^5+22*x^4+10*x^3+22*x^2+17*x+3', 'y^2=9*x^6+24*x^5+9*x^4+20*x^2+x+25', 'y^2=5*x^6+11*x^5+23*x^3+27*x^2+29*x+10', 'y^2=2*x^6+19*x^5+11*x^4+18*x^3+16*x^2+x+17', 'y^2=30*x^6+x^5+20*x^4+14*x^3+26*x^2+10', 'y^2=25*x^6+19*x^5+12*x^4+25*x^3+11*x^2+11*x+24', 'y^2=3*x^6+7*x^5+17*x^4+8*x^3+9*x^2+27*x+13', 'y^2=7*x^6+3*x^5+10*x^4+10*x^3+3*x^2+18*x+21', 'y^2=5*x^6+13*x^5+26*x^4+20*x^3+20*x^2+13*x+16', 'y^2=16*x^6+13*x^5+4*x^4+20*x^3+11*x^2+6*x+8', 'y^2=24*x^6+20*x^5+4*x^4+9*x^3+16*x^2+13', 'y^2=x^6+24*x^5+17*x^4+12*x^3+25*x^2+3*x+29', 'y^2=13*x^6+5*x^5+11*x^4+12*x^3+23*x^2+4*x+15', 'y^2=17*x^6+9*x^5+10*x^4+21*x^3+30*x^2+8*x+27', 'y^2=2*x^6+6*x^5+7*x^4+11*x^3+29*x^2+9*x+10', 'y^2=25*x^6+9*x^5+28*x^4+18*x^3+18*x^2+27*x+16', 'y^2=8*x^6+2*x^5+24*x^4+29*x^3+8*x^2+17*x+30', 'y^2=18*x^6+16*x^5+20*x^3+18*x^2+5*x+1', 'y^2=x^6+2*x^4+24*x^3+17*x^2+4*x+13', 'y^2=29*x^6+27*x^5+24*x^4+14*x^3+20*x^2+7*x+20', 'y^2=16*x^6+30*x^5+6*x^4+10*x^3+23*x^2+30*x+13', 'y^2=24*x^6+x^5+11*x^4+29*x^3+26*x^2+15*x+22', 'y^2=30*x^6+17*x^5+12*x^4+14*x^3+21*x^2+27*x+18', 'y^2=20*x^6+x^5+19*x^4+19*x^3+6*x^2+9*x+8', 'y^2=6*x^6+25*x^5+27*x^4+13*x^3+12*x^2+28*x+8', 'y^2=24*x^6+25*x^5+26*x^4+13*x^3+4*x^2+24*x+12'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 4, 'g': 2, 'galois_groups': ['4T3'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T3'], 'geometric_number_fields': ['4.0.133341.1'], 'geometric_splitting_field': '4.0.133341.1', 'geometric_splitting_polynomials': [[53, -15, 16, -2, 1]], 'group_structure_count': 3, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 68, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 68, 'label': '2.31.f_bn', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.133341.1'], 'p': 31, 'p_rank': 2, 'p_rank_deficit': 0, 'pic_prime_gens': [[1, 13, 1, 8], [1, 17, 1, 24]], 'poly': [1, 5, 39, 155, 961], 'poly_str': '1 5 39 155 961 ', 'primitive_models': [], 'principal_polarization_count': 68, 'q': 31, 'real_poly': [1, 5, -23], 'simple_distinct': ['2.31.f_bn'], 'simple_factors': ['2.31.f_bnA'], 'simple_multiplicities': [1], 'singular_primes': ['3,-6*F-2*V-10'], 'size': 100, 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.133341.1', 'splitting_polynomials': [[53, -15, 16, -2, 1]], 'twist_count': 2, 'twists': [['2.31.af_bn', '2.961.cb_cuv', 2]], 'weak_equivalence_count': 5, 'zfv_index': 27, 'zfv_index_factorization': [[3, 3]], 'zfv_is_bass': False, 'zfv_is_maximal': False, 'zfv_pic_size': 48, 'zfv_plus_index': 3, 'zfv_plus_index_factorization': [[3, 1]], 'zfv_plus_norm': 7101, 'zfv_singular_count': 2, 'zfv_singular_primes': ['3,-6*F-2*V-10']}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.31.f_bn', 'extension_degree': 1, 'extension_label': '2.31.f_bn', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '4.0.133341.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.31.f_bn', 'galois_group': '4T3', 'places': [['13', '21', '11', '0'], ['17', '12', '20', '0']]}