-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 1084, 'abvar_counts': [1084, 897552, 902756284, 853952514048, 819573491338684, 787643674445153808, 756928640869741897276, 727424169777173486665728, 699053521131025005206630716, 671790620580712898451482441232], 'abvar_counts_str': '1084 897552 902756284 853952514048 819573491338684 787643674445153808 756928640869741897276 727424169777173486665728 699053521131025005206630716 671790620580712898451482441232 ', 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.302115536045, 0.890683594591007], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 36, 'curve_counts': [36, 934, 30300, 924670, 28627236, 887482150, 27512058204, 852892266238, 26439618421284, 819628398935974], 'curve_counts_str': '36 934 30300 924670 28627236 887482150 27512058204 852892266238 26439618421284 819628398935974 ', 'curves': ['y^2=10*x^6+16*x^5+25*x^4+19*x^3+25*x^2+14*x+27', 'y^2=26*x^6+16*x^5+12*x^4+15*x^3+5*x^2+27*x+24', 'y^2=11*x^6+21*x^5+x^4+13*x^3+16*x^2+27*x+16', 'y^2=11*x^6+x^5+15*x^4+15*x^3+23*x^2+x+21', 'y^2=x^6+23*x^4+12*x^3+9*x^2+6*x+19', 'y^2=11*x^6+23*x^5+6*x^4+27*x^3+10*x^2+10*x', 'y^2=26*x^6+30*x^5+14*x^4+24*x^3+4*x^2+28', 'y^2=18*x^6+18*x^5+11*x^4+23*x^3+26*x^2+18*x+12', 'y^2=19*x^6+5*x^5+17*x^4+13*x^3+26*x^2+23*x+4', 'y^2=25*x^6+7*x^5+22*x^4+14*x^3+7*x^2+18*x+5', 'y^2=2*x^6+26*x^5+2*x^4+12*x^3+28*x^2+9*x', 'y^2=21*x^6+14*x^5+2*x^4+16*x^3+30*x^2+7*x+29', 'y^2=5*x^6+14*x^5+13*x^4+6*x^3+11*x^2+4*x+22', 'y^2=25*x^6+30*x^5+4*x^4+11*x^2+25*x+20', 'y^2=4*x^6+19*x^5+16*x^4+16*x^2+8*x+4', 'y^2=11*x^6+12*x^5+8*x^4+26*x^3+15*x^2+7*x+11', 'y^2=28*x^6+17*x^5+9*x^4+9*x^3+23*x^2+22*x+16', 'y^2=23*x^6+10*x^5+4*x^4+3*x^3+25*x^2+2*x+4', 'y^2=26*x^6+5*x^5+26*x^4+3*x^2+14*x+1', 'y^2=5*x^6+21*x^5+7*x^4+8*x^3+11*x^2+29*x+18', 'y^2=x^6+20*x^5+7*x^4+24*x^3+25*x^2+25*x+9', 'y^2=19*x^6+21*x^5+6*x^4+19*x^3+24*x^2+8*x+25', 'y^2=2*x^6+6*x^5+20*x^4+5*x^3+26*x^2+4*x+16', 'y^2=14*x^6+12*x^5+12*x^4+16*x^3+13*x^2+14*x+30', 'y^2=16*x^6+9*x^5+4*x^4+27*x^3+24*x^2+25*x+18', 'y^2=5*x^6+12*x^5+14*x^4+12*x^3+23*x^2+23*x+5', 'y^2=4*x^6+2*x^5+6*x^4+19*x^3+13*x^2+2*x', 'y^2=26*x^6+12*x^5+10*x^4+5*x^3+22*x^2+17*x+4', 'y^2=26*x^6+9*x^5+12*x^4+17*x^3+9*x^2+8*x+12', 'y^2=28*x^6+9*x^5+21*x^4+3*x^3+20*x^2+6*x+18', 'y^2=25*x^6+24*x^5+22*x^3+15*x^2+23*x+17', 'y^2=14*x^6+29*x^5+9*x^4+10*x^3+18*x^2+14*x+18', 'y^2=30*x^6+3*x^5+9*x^4+5*x^3+10*x^2+22*x+14', 'y^2=15*x^6+18*x^5+30*x^4+11*x^3+9*x^2+18*x+9', 'y^2=5*x^6+7*x^5+7*x^4+15*x^3+30*x^2+19*x+24', 'y^2=14*x^6+13*x^5+26*x^4+28*x^3+18*x^2+15*x+6', 'y^2=9*x^6+21*x^5+10*x^4+16*x^3+21*x^2+23*x+1', 'y^2=17*x^6+10*x^5+x^4+25*x^3+8*x^2+12*x+27', 'y^2=21*x^6+19*x^5+23*x^4+16*x^3+12*x^2+12*x+30', 'y^2=21*x^6+29*x^5+18*x^4+13*x^3+14*x^2+30*x+26', 'y^2=10*x^6+17*x^5+4*x^4+28*x^3+25*x^2+18*x+18', 'y^2=20*x^6+15*x^5+21*x^4+8*x^3+24*x^2+12*x+29', 'y^2=29*x^6+2*x^5+26*x^4+20*x^3+9*x^2+9*x', 'y^2=8*x^6+8*x^5+29*x^4+19*x^3+23*x^2+17*x+5', 'y^2=3*x^6+15*x^5+29*x^4+7*x^3+26*x^2+30*x+24', 'y^2=18*x^6+21*x^5+11*x^4+28*x^3+13*x^2+20*x+16', 'y^2=22*x^6+18*x^5+x^4+26*x^3+7*x^2+30*x+18', 'y^2=2*x^6+16*x^5+26*x^4+30*x^3+22*x^2+10*x+30', 'y^2=20*x^6+24*x^5+15*x^3+20*x^2+19*x+4', 'y^2=16*x^6+20*x^5+x^4+26*x^3+29*x^2+15*x+26', 'y^2=16*x^6+5*x^5+4*x^4+14*x^3+14*x^2+6*x', 'y^2=5*x^6+x^5+7*x^4+11*x^3+22*x^2+7*x+16', 'y^2=15*x^6+9*x^4+19*x^3+16*x^2+25*x+14', 'y^2=x^6+21*x^5+13*x^4+27*x^3+8*x^2+25*x+5', 'y^2=10*x^6+11*x^5+x^4+29*x^3+22*x^2+21*x+4', 'y^2=30*x^6+29*x^5+27*x^4+6*x^3+28*x^2+4*x+9'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 12, 'g': 2, 'galois_groups': ['4T1'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T1'], 'geometric_number_fields': ['4.0.18432.2'], 'geometric_splitting_field': '4.0.18432.2', 'geometric_splitting_polynomials': [[18, 0, 12, 0, 1]], 'group_structure_count': 2, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 56, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 56, 'label': '2.31.e_ag', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.18432.2'], 'p': 31, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, 4, -6, 124, 961], 'poly_str': '1 4 -6 124 961 ', 'primitive_models': [], 'q': 31, 'real_poly': [1, 4, -68], 'simple_distinct': ['2.31.e_ag'], 'simple_factors': ['2.31.e_agA'], 'simple_multiplicities': [1], 'singular_primes': ['2,9*V+37', '3,2*F^2+4'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.18432.2', 'splitting_polynomials': [[18, 0, 12, 0, 1]], 'twist_count': 2, 'twists': [['2.31.ae_ag', '2.961.abc_ble', 2]], 'weak_equivalence_count': 12, 'zfv_index': 72, 'zfv_index_factorization': [[2, 3], [3, 2]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_plus_index': 6, 'zfv_plus_index_factorization': [[2, 1], [3, 1]], 'zfv_plus_norm': 1152, 'zfv_singular_count': 4, 'zfv_singular_primes': ['2,9*V+37', '3,2*F^2+4']}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.31.e_ag', 'extension_degree': 1, 'extension_label': '2.31.e_ag', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0', '0', '0'], 'center': '4.0.18432.2', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.31.e_ag', 'galois_group': '4T1', 'places': [['1', '1', '0', '0'], ['7', '1', '0', '0'], ['30', '1', '0', '0'], ['24', '1', '0', '0']]}