-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 1069, 'abvar_counts': [1069, 1005929, 885559600, 853189746569, 819488056569709, 787592776877369600, 756955213340109128749, 727425310611746150236169, 699053272009704646487527600, 671790501247116487456842444009], 'abvar_counts_str': '1069 1005929 885559600 853189746569 819488056569709 787592776877369600 756955213340109128749 727425310611746150236169 699053272009704646487527600 671790501247116487456842444009 ', 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.39906575942369, 0.663519173942348], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 34, 'curve_counts': [34, 1044, 29728, 923844, 28624254, 887424798, 27513024034, 852893603844, 26439608999008, 819628253341204], 'curve_counts_str': '34 1044 29728 923844 28624254 887424798 27513024034 852893603844 26439608999008 819628253341204 ', 'curves': ['y^2=14*x^6+15*x^5+24*x^4+10*x^3+30*x^2+6*x+10', 'y^2=16*x^6+18*x^5+11*x^4+25*x^3+30*x^2+30*x+20', 'y^2=29*x^6+12*x^5+6*x^4+12*x^3+7*x^2+24*x+20', 'y^2=30*x^6+15*x^5+x^4+21*x^3+27*x^2+8*x+29', 'y^2=20*x^6+x^5+22*x^4+4*x^3+20*x^2+2*x+25', 'y^2=25*x^6+29*x^5+16*x^4+2*x^3+9*x^2+17*x+1', 'y^2=25*x^6+23*x^5+19*x^4+x^3+19*x^2+28*x+5', 'y^2=20*x^6+25*x^5+12*x^4+8*x^3+26*x^2+24*x+3', 'y^2=14*x^6+21*x^5+23*x^4+3*x^3+x^2+8*x+9', 'y^2=20*x^6+18*x^5+27*x^4+22*x^3+13*x^2+24*x+3', 'y^2=6*x^6+19*x^5+23*x^4+14*x^3+12*x^2+10*x+14', 'y^2=10*x^6+6*x^5+10*x^4+11*x^3+29*x^2+15*x+25', 'y^2=4*x^6+5*x^5+24*x^4+22*x^3+12*x^2+4*x+1', 'y^2=24*x^6+19*x^5+28*x^4+2*x^3+6*x^2+24*x+27', 'y^2=25*x^6+12*x^5+11*x^4+26*x^3+25*x^2+29*x+30', 'y^2=28*x^6+25*x^5+28*x^4+11*x^3+27*x^2+27*x+23', 'y^2=30*x^6+24*x^5+10*x^4+21*x^3+12*x^2+12*x+16', 'y^2=8*x^6+16*x^5+28*x^4+26*x^3+20*x^2+6*x+11', 'y^2=22*x^6+11*x^5+21*x^4+16*x^3+4*x^2+24*x+21', 'y^2=6*x^6+24*x^4+8*x^3+14*x^2+x+23', 'y^2=27*x^6+x^5+x^4+15*x^3+21*x^2+23*x+30', 'y^2=7*x^6+x^5+12*x^3+21*x^2+22*x+13', 'y^2=19*x^6+13*x^5+18*x^4+18*x^3+5*x^2+24*x+15', 'y^2=20*x^6+19*x^5+x^4+25*x^3+7*x^2+25*x+24', 'y^2=17*x^6+11*x^5+25*x^4+2*x^3+13*x^2+7*x+2', 'y^2=16*x^6+20*x^5+13*x^4+22*x^3+9*x^2+x+13', 'y^2=19*x^6+14*x^5+23*x^3+16*x^2+3*x+23', 'y^2=10*x^6+16*x^5+x^4+16*x^3+3*x^2+17*x+13', 'y^2=12*x^6+17*x^5+9*x^4+18*x^3+26*x^2+14*x+21', 'y^2=13*x^6+23*x^5+15*x^4+25*x^3+30*x^2+30*x+30', 'y^2=x^6+4*x^5+2*x^4+27*x^3+14*x^2+23*x+28', 'y^2=27*x^6+24*x^5+15*x^4+15*x^3+24*x^2+2*x+7', 'y^2=6*x^6+23*x^5+8*x^4+29*x^3+x^2+8*x+17', 'y^2=29*x^6+19*x^4+8*x^3+3*x^2+14*x+23', 'y^2=22*x^6+18*x^5+29*x^4+21*x^3+3*x^2+x+27', 'y^2=23*x^6+14*x^5+2*x^4+17*x^3+6*x+15', 'y^2=25*x^6+27*x^5+28*x^4+21*x^3+16*x^2+25*x+11', 'y^2=7*x^6+10*x^5+x^4+16*x^3+x^2+8*x+3', 'y^2=15*x^6+19*x^5+7*x^4+14*x^3+14*x^2+9*x+9', 'y^2=21*x^6+6*x^5+x^4+6*x^3+6*x^2+2*x+22', 'y^2=10*x^6+25*x^5+21*x^4+26*x^3+x^2+14*x+9', 'y^2=12*x^6+25*x^4+8*x^3+23*x^2+27*x+27', 'y^2=6*x^6+4*x^5+27*x^4+8*x^3+26*x^2+17*x+30', 'y^2=26*x^6+3*x^5+3*x^4+19*x^3+24*x^2+19*x+4', 'y^2=20*x^6+14*x^5+5*x^4+9*x^3+25*x^2+3', 'y^2=23*x^6+24*x^5+8*x^4+30*x^3+16*x+9', 'y^2=23*x^6+5*x^5+3*x^4+10*x^3+27*x^2+10*x+25', 'y^2=5*x^6+3*x^5+4*x^4+6*x^3+28*x^2+17*x+26', 'y^2=x^6+27*x^5+4*x^4+x^3+14*x^2+20*x+8', 'y^2=29*x^6+11*x^5+8*x^4+10*x^3+7*x^2+9*x+5', 'y^2=24*x^6+x^5+24*x^4+8*x^3+27*x^2+27*x+28', 'y^2=12*x^6+27*x^5+x^4+8*x^3+15*x^2+13*x+24'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 3, 'g': 2, 'galois_groups': ['4T3'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T3'], 'geometric_number_fields': ['4.0.263225.1'], 'geometric_splitting_field': '4.0.263225.1', 'geometric_splitting_polynomials': [[671, -52, 53, -2, 1]], 'group_structure_count': 1, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 52, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 52, 'label': '2.31.c_br', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.263225.1'], 'p': 31, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, 2, 43, 62, 961], 'poly_str': '1 2 43 62 961 ', 'primitive_models': [], 'q': 31, 'real_poly': [1, 2, -19], 'simple_distinct': ['2.31.c_br'], 'simple_factors': ['2.31.c_brA'], 'simple_multiplicities': [1], 'singular_primes': ['2,3*F^2-2*F-V+2'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.263225.1', 'splitting_polynomials': [[671, -52, 53, -2, 1]], 'twist_count': 2, 'twists': [['2.31.ac_br', '2.961.de_ffn', 2]], 'weak_equivalence_count': 3, 'zfv_index': 16, 'zfv_index_factorization': [[2, 4]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_plus_index': 4, 'zfv_plus_index_factorization': [[2, 2]], 'zfv_plus_norm': 10529, 'zfv_singular_count': 2, 'zfv_singular_primes': ['2,3*F^2-2*F-V+2']}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.31.c_br', 'extension_degree': 1, 'extension_label': '2.31.c_br', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0', '0', '0'], 'center': '4.0.263225.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.31.c_br', 'galois_group': '4T3', 'places': [['6', '1', '0', '0'], ['25', '1', '0', '0'], ['24', '1', '0', '0'], ['5', '1', '0', '0']]}