-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 998, 'abvar_counts': [998, 996004, 887446550, 854049525904, 819628289498678, 787561379106902500, 756943935271982731718, 727425603947087334641664, 699053619999010670534274950, 671790532946528713052563747684], 'abvar_counts_str': '998 996004 887446550 854049525904 819628289498678 787561379106902500 756943935271982731718 727425603947087334641664 699053619999010670534274950 671790532946528713052563747684 ', 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.348599812917366, 0.651400187082634], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 32, 'curve_counts': [32, 1034, 29792, 924774, 28629152, 887389418, 27512614112, 852893947774, 26439622160672, 819628292016554], 'curve_counts_str': '32 1034 29792 924774 28629152 887389418 27512614112 852893947774 26439622160672 819628292016554 ', 'curves': ['y^2=7*x^6+28*x^5+2*x^4+25*x^3+7*x^2+11*x+6', 'y^2=21*x^6+22*x^5+6*x^4+13*x^3+21*x^2+2*x+18', 'y^2=16*x^6+18*x^5+7*x^4+12*x^3+27*x^2+25*x+8', 'y^2=17*x^6+23*x^5+21*x^4+5*x^3+19*x^2+13*x+24', 'y^2=10*x^6+15*x^5+9*x^4+9*x^3+x^2+20*x+22', 'y^2=30*x^6+14*x^5+27*x^4+27*x^3+3*x^2+29*x+4', 'y^2=29*x^6+18*x^5+27*x^4+7*x^3+10*x^2+6*x+23', 'y^2=25*x^6+23*x^5+19*x^4+21*x^3+30*x^2+18*x+7', 'y^2=7*x^6+9*x^5+6*x^4+x^3+20*x^2+16*x+4', 'y^2=21*x^6+27*x^5+18*x^4+3*x^3+29*x^2+17*x+12', 'y^2=24*x^6+9*x^5+5*x^4+28*x^3+16*x^2+24*x+11', 'y^2=10*x^6+27*x^5+15*x^4+22*x^3+17*x^2+10*x+2', 'y^2=25*x^6+18*x^5+9*x^4+27*x^2+27*x+27', 'y^2=13*x^6+23*x^5+27*x^4+19*x^2+19*x+19', 'y^2=14*x^6+20*x^5+29*x^3+7*x^2+18*x+4', 'y^2=11*x^6+29*x^5+25*x^3+21*x^2+23*x+12', 'y^2=4*x^6+24*x^5+5*x^4+6*x^3+8*x^2+15*x+19', 'y^2=12*x^6+10*x^5+15*x^4+18*x^3+24*x^2+14*x+26', 'y^2=18*x^6+15*x^5+18*x^4+x^3+16*x^2+11*x+28', 'y^2=23*x^6+14*x^5+23*x^4+3*x^3+17*x^2+2*x+22', 'y^2=28*x^6+9*x^4+14*x^3+10*x^2+14*x+7', 'y^2=22*x^6+27*x^4+11*x^3+30*x^2+11*x+21', 'y^2=17*x^6+16*x^5+19*x^4+20*x^3+28*x^2+30*x+20', 'y^2=20*x^6+17*x^5+26*x^4+29*x^3+22*x^2+28*x+29', 'y^2=16*x^6+16*x^5+9*x^4+5*x^3+12*x^2+20*x+29', 'y^2=17*x^6+17*x^5+27*x^4+15*x^3+5*x^2+29*x+25', 'y^2=5*x^6+17*x^5+22*x^4+29*x^3+19*x^2+11*x+3', 'y^2=15*x^6+20*x^5+4*x^4+25*x^3+26*x^2+2*x+9', 'y^2=10*x^6+30*x^5+12*x^4+23*x^3+29*x^2+25*x+4', 'y^2=30*x^6+28*x^5+5*x^4+7*x^3+25*x^2+13*x+12', 'y^2=10*x^6+16*x^5+8*x^4+29*x^3+12*x^2+13*x+3', 'y^2=30*x^6+17*x^5+24*x^4+25*x^3+5*x^2+8*x+9', 'y^2=10*x^6+14*x^4+15*x^3+18*x^2+10', 'y^2=30*x^6+11*x^4+14*x^3+23*x^2+30', 'y^2=27*x^6+24*x^5+21*x^4+15*x^3+2*x^2+9*x+19', 'y^2=19*x^6+10*x^5+x^4+14*x^3+6*x^2+27*x+26', 'y^2=27*x^6+29*x^5+28*x^4+19*x^3+25*x^2+7*x+4', 'y^2=19*x^6+25*x^5+22*x^4+26*x^3+13*x^2+21*x+12', 'y^2=11*x^6+24*x^5+29*x^4+6*x^3+23*x^2+18*x+6', 'y^2=2*x^6+10*x^5+25*x^4+18*x^3+7*x^2+23*x+18', 'y^2=11*x^6+24*x^5+x^2+12*x+28', 'y^2=2*x^6+10*x^5+3*x^2+5*x+22'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 2, 'g': 2, 'galois_groups': ['4T2'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 2, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.52.1'], 'geometric_splitting_field': '2.0.52.1', 'geometric_splitting_polynomials': [[13, 0, 1]], 'group_structure_count': 1, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 42, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 42, 'label': '2.31.a_bk', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 8, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.43264.1'], 'p': 31, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, 0, 36, 0, 961], 'poly_str': '1 0 36 0 961 ', 'primitive_models': [], 'q': 31, 'real_poly': [1, 0, -26], 'simple_distinct': ['2.31.a_bk'], 'simple_factors': ['2.31.a_bkA'], 'simple_multiplicities': [1], 'singular_primes': ['7,32*F^2-6*F-15*V-5'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.43264.1', 'splitting_polynomials': [[49, 0, -12, 0, 1]], 'twist_count': 4, 'twists': [['2.31.a_abk', '2.923521.bwe_exkag', 4], ['2.31.ao_du', '2.852891037441.gjpfw_siamnaceg', 8], ['2.31.o_du', '2.852891037441.gjpfw_siamnaceg', 8]], 'weak_equivalence_count': 2, 'zfv_index': 49, 'zfv_index_factorization': [[7, 2]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 9604, 'zfv_singular_count': 2, 'zfv_singular_primes': ['7,32*F^2-6*F-15*V-5']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 20501
{'base_label': '2.31.a_bk', 'extension_degree': 1, 'extension_label': '2.31.a_bk', 'multiplicity': 1}
-
id: 20502
{'base_label': '2.31.a_bk', 'extension_degree': 2, 'extension_label': '1.961.bk', 'multiplicity': 2}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '4.0.43264.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.31.a_bk', 'galois_group': '4T2', 'places': [['0', '23', '0', '3'], ['0', '27', '0', '27']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.52.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.961.bk', 'galois_group': '2T1', 'places': [['7', '1'], ['24', '1']]}