-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 524, 'abvar_counts': [524, 148816, 45707996, 16974548224, 6133759919324, 2213389411949776, 799028240375313164, 288436140770917699584, 104127439811051510614316, 37590022839928053712916176], 'abvar_counts_str': '524 148816 45707996 16974548224 6133759919324 2213389411949776 799028240375313164 288436140770917699584 104127439811051510614316 37590022839928053712916176 ', 'all_polarized_product': False, 'all_unpolarized_product': False, 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.527929002903143, 0.705078805560054], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 26, 'curve_counts': [26, 410, 6662, 130254, 2477186, 47047466, 893895854, 16983252574, 322687975178, 6131074312250], 'curve_counts_str': '26 410 6662 130254 2477186 47047466 893895854 16983252574 322687975178 6131074312250 ', 'curves': ['y^2=6*x^6+17*x^5+10*x^4+9*x^3+3*x^2+5*x+13', 'y^2=5*x^6+17*x^5+8*x^4+5*x^3+3*x^2+11*x+4', 'y^2=14*x^6+15*x^5+9*x^4+3*x^3+17*x^2+18*x+16', 'y^2=12*x^6+x^5+15*x^4+5*x^3+x+7', 'y^2=4*x^6+6*x^5+16*x^4+5*x^2+x+6', 'y^2=9*x^6+9*x^5+2*x^4+16*x^3+17*x^2+10*x+11', 'y^2=4*x^6+16*x^5+2*x^4+10*x^3+18*x^2+4*x+6', 'y^2=11*x^6+13*x^5+18*x^4+10*x^3+9*x^2+17*x+2', 'y^2=15*x^6+2*x^5+2*x^4+5*x^3+15*x^2+16*x+7', 'y^2=11*x^6+6*x^5+x^4+10*x^3+10*x^2+18*x+17', 'y^2=7*x^6+14*x^4+17*x^3+5*x^2+15*x+8', 'y^2=16*x^6+13*x^5+14*x^4+5*x^3+12*x^2+14*x+11', 'y^2=7*x^6+15*x^5+12*x^4+4*x^3+2*x^2+12*x+6', 'y^2=7*x^6+5*x^5+16*x^4+17*x^3+13*x^2+7*x+16', 'y^2=x^6+11*x^5+8*x^4+17*x^3+8*x^2+17*x+9', 'y^2=9*x^6+5*x^5+12*x^4+14*x^3+13*x^2+17*x+7', 'y^2=7*x^6+15*x^5+9*x^4+8*x^3+16*x^2+x+8', 'y^2=17*x^6+9*x^3+18*x^2+8*x+12'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 3, 'g': 2, 'galois_groups': ['4T3'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T3'], 'geometric_number_fields': ['4.0.91600.1'], 'geometric_splitting_field': '4.0.91600.1', 'geometric_splitting_polynomials': [[229, 0, 31, 0, 1]], 'group_structure_count': 2, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 18, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 18, 'label': '2.19.g_bq', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.91600.1'], 'p': 19, 'p_rank': 2, 'p_rank_deficit': 0, 'pic_prime_gens': [[1, 3, 1, 3], [1, 19, 1, 12]], 'poly': [1, 6, 42, 114, 361], 'poly_str': '1 6 42 114 361 ', 'primitive_models': [], 'principal_polarization_count': 18, 'q': 19, 'real_poly': [1, 6, 4], 'simple_distinct': ['2.19.g_bq'], 'simple_factors': ['2.19.g_bqA'], 'simple_multiplicities': [1], 'singular_primes': ['2,-4*F-V-7'], 'size': 24, 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.91600.1', 'splitting_polynomials': [[229, 0, 31, 0, 1]], 'twist_count': 2, 'twists': [['2.19.ag_bq', '2.361.bw_bra', 2]], 'weak_equivalence_count': 3, 'zfv_index': 4, 'zfv_index_factorization': [[2, 2]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_pic_size': 12, 'zfv_plus_index': 2, 'zfv_plus_index_factorization': [[2, 1]], 'zfv_plus_norm': 3664, 'zfv_singular_count': 2, 'zfv_singular_primes': ['2,-4*F-V-7']}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.19.g_bq', 'extension_degree': 1, 'extension_label': '2.19.g_bq', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0', '0', '0'], 'center': '4.0.91600.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.19.g_bq', 'galois_group': '4T3', 'places': [['16', '1', '0', '0'], ['6', '1', '0', '0'], ['3', '1', '0', '0'], ['13', '1', '0', '0']]}