Properties

Label 6.2.d_i_o_z_bi_cb
Base field $\F_{2}$
Dimension $6$
$p$-rank $6$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Downloads

Learn more

Invariants

Base field:  $\F_{2}$
Dimension:  $6$
L-polynomial:  $1 + 3 x + 8 x^{2} + 14 x^{3} + 25 x^{4} + 34 x^{5} + 53 x^{6} + 68 x^{7} + 100 x^{8} + 112 x^{9} + 128 x^{10} + 96 x^{11} + 64 x^{12}$
Frobenius angles:  $\pm0.225737475123$, $\pm0.416267178839$, $\pm0.511096053293$, $\pm0.646402346767$, $\pm0.779765245285$, $\pm0.812119064030$
Angle rank:  $6$ (numerical)
Number field:  12.0.782394669817139369.1
Galois group:  12T293
Jacobians:  $2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $6$
Slopes:  $[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $706$ $36712$ $223096$ $30911504$ $675522686$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $6$ $12$ $6$ $28$ $21$ $96$ $132$ $220$ $483$ $867$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 2 curves (of which 0 are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{2}$.

Endomorphism algebra over $\F_{2}$
The endomorphism algebra of this simple isogeny class is 12.0.782394669817139369.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
6.2.ad_i_ao_z_abi_cb$2$(not in LMFDB)