Properties

Label 6.2.aj_bq_afd_mh_axm_bkq
Base field $\F_{2}$
Dimension $6$
$p$-rank $4$
Ordinary no
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Downloads

Learn more

Invariants

Base field:  $\F_{2}$
Dimension:  $6$
L-polynomial:  $( 1 - 2 x + 2 x^{2} )^{2}( 1 - 3 x + 5 x^{2} - 6 x^{3} + 4 x^{4} )( 1 - 2 x + 3 x^{2} - 4 x^{3} + 4 x^{4} )$
  $1 - 9 x + 42 x^{2} - 133 x^{3} + 319 x^{4} - 610 x^{5} + 952 x^{6} - 1220 x^{7} + 1276 x^{8} - 1064 x^{9} + 672 x^{10} - 288 x^{11} + 64 x^{12}$
Frobenius angles:  $\pm0.123548644961$, $\pm0.174442860055$, $\pm0.250000000000$, $\pm0.250000000000$, $\pm0.456881978294$, $\pm0.546783656212$
Angle rank:  $3$ (numerical)
Jacobians:  $0$

This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable.

Newton polygon

$p$-rank:  $4$
Slopes:  $[0, 0, 0, 0, 1/2, 1/2, 1/2, 1/2, 1, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2$ $13300$ $796328$ $23940000$ $2846407042$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $-6$ $8$ $15$ $24$ $64$ $113$ $134$ $208$ $483$ $1048$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{2^{12}}$.

Endomorphism algebra over $\F_{2}$
The isogeny class factors as 1.2.ac 2 $\times$ 2.2.ad_f $\times$ 2.2.ac_d and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{2}$
The base change of $A$ to $\F_{2^{12}}$ is 1.4096.h 2 $\times$ 1.4096.ey 2 $\times$ 2.4096.adu_hrl. The endomorphism algebra for each factor is:
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
6.2.af_o_abd_bz_ada_ei$2$(not in LMFDB)
6.2.af_o_az_bf_aba_y$2$(not in LMFDB)
6.2.ad_g_ah_h_c_ai$2$(not in LMFDB)
6.2.ab_c_af_h_ak_y$2$(not in LMFDB)
6.2.ab_c_ab_d_ag_q$2$(not in LMFDB)
6.2.b_c_b_d_g_q$2$(not in LMFDB)
6.2.b_c_f_h_k_y$2$(not in LMFDB)
6.2.d_g_h_h_ac_ai$2$(not in LMFDB)
6.2.f_o_z_bf_ba_y$2$(not in LMFDB)
6.2.f_o_bd_bz_da_ei$2$(not in LMFDB)
6.2.j_bq_fd_mh_xm_bkq$2$(not in LMFDB)
6.2.ag_s_abi_bx_acm_dk$3$(not in LMFDB)
6.2.ad_g_ah_b_o_aba$3$(not in LMFDB)
6.2.ad_g_ah_h_c_ai$3$(not in LMFDB)
6.2.a_a_c_b_c_k$3$(not in LMFDB)
6.2.d_g_l_n_o_w$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
6.2.af_o_abd_bz_ada_ei$2$(not in LMFDB)
6.2.af_o_az_bf_aba_y$2$(not in LMFDB)
6.2.ad_g_ah_h_c_ai$2$(not in LMFDB)
6.2.ab_c_af_h_ak_y$2$(not in LMFDB)
6.2.ab_c_ab_d_ag_q$2$(not in LMFDB)
6.2.b_c_b_d_g_q$2$(not in LMFDB)
6.2.b_c_f_h_k_y$2$(not in LMFDB)
6.2.d_g_h_h_ac_ai$2$(not in LMFDB)
6.2.f_o_z_bf_ba_y$2$(not in LMFDB)
6.2.f_o_bd_bz_da_ei$2$(not in LMFDB)
6.2.j_bq_fd_mh_xm_bkq$2$(not in LMFDB)
6.2.ag_s_abi_bx_acm_dk$3$(not in LMFDB)
6.2.ad_g_ah_b_o_aba$3$(not in LMFDB)
6.2.ad_g_ah_h_c_ai$3$(not in LMFDB)
6.2.a_a_c_b_c_k$3$(not in LMFDB)
6.2.d_g_l_n_o_w$3$(not in LMFDB)
6.2.ah_ba_act_gb_ala_qw$6$(not in LMFDB)
6.2.ae_i_ao_z_abi_bq$6$(not in LMFDB)
6.2.ad_g_al_n_ao_w$6$(not in LMFDB)
6.2.ac_c_ac_j_am_q$6$(not in LMFDB)
6.2.ac_c_c_b_ai_y$6$(not in LMFDB)
6.2.ab_c_af_b_c_g$6$(not in LMFDB)
6.2.a_a_ac_b_ac_k$6$(not in LMFDB)
6.2.b_c_f_b_ac_g$6$(not in LMFDB)
6.2.c_c_ac_b_i_y$6$(not in LMFDB)
6.2.c_c_c_j_m_q$6$(not in LMFDB)
6.2.d_g_h_b_ao_aba$6$(not in LMFDB)
6.2.e_i_o_z_bi_bq$6$(not in LMFDB)
6.2.g_s_bi_bx_cm_dk$6$(not in LMFDB)
6.2.h_ba_ct_gb_la_qw$6$(not in LMFDB)
6.2.ah_bc_add_hd_ang_um$8$(not in LMFDB)
6.2.af_k_aj_af_bm_acy$8$(not in LMFDB)
6.2.af_s_abx_ed_ahm_lo$8$(not in LMFDB)
6.2.ad_i_ar_bd_abs_cq$8$(not in LMFDB)
6.2.ad_i_an_r_aq_u$8$(not in LMFDB)
6.2.ab_ac_d_af_ac_u$8$(not in LMFDB)
6.2.ab_e_ad_f_e_e$8$(not in LMFDB)
6.2.ab_g_af_l_ak_m$8$(not in LMFDB)
6.2.b_ac_ad_af_c_u$8$(not in LMFDB)
6.2.b_e_d_f_ae_e$8$(not in LMFDB)
6.2.b_g_f_l_k_m$8$(not in LMFDB)
6.2.d_i_n_r_q_u$8$(not in LMFDB)
6.2.d_i_r_bd_bs_cq$8$(not in LMFDB)
6.2.f_k_j_af_abm_acy$8$(not in LMFDB)
6.2.f_s_bx_ed_hm_lo$8$(not in LMFDB)
6.2.h_bc_dd_hd_ng_um$8$(not in LMFDB)
6.2.ag_u_abu_dj_afo_ii$12$(not in LMFDB)
6.2.ae_k_aw_br_acs_dy$12$(not in LMFDB)
6.2.ac_e_ag_p_au_bg$12$(not in LMFDB)
6.2.ac_e_ac_h_ai_y$12$(not in LMFDB)
6.2.a_c_ac_d_ag_g$12$(not in LMFDB)
6.2.a_c_c_d_g_g$12$(not in LMFDB)
6.2.c_e_c_h_i_y$12$(not in LMFDB)
6.2.c_e_g_p_u_bg$12$(not in LMFDB)
6.2.e_k_w_br_cs_dy$12$(not in LMFDB)
6.2.g_u_bu_dj_fo_ii$12$(not in LMFDB)
6.2.af_m_at_x_au_s$24$(not in LMFDB)
6.2.af_q_abn_db_afg_hy$24$(not in LMFDB)
6.2.ae_k_as_bd_abm_ca$24$(not in LMFDB)
6.2.ae_m_aba_bz_ade_eu$24$(not in LMFDB)
6.2.ac_ac_g_b_ae_ae$24$(not in LMFDB)
6.2.ac_a_c_ab_e_am$24$(not in LMFDB)
6.2.ac_a_c_f_ai_g$24$(not in LMFDB)
6.2.ac_c_ac_h_ai_k$24$(not in LMFDB)
6.2.ac_e_ag_n_aq_ba$24$(not in LMFDB)
6.2.ac_g_ak_r_au_bk$24$(not in LMFDB)
6.2.ac_g_ak_x_abg_cc$24$(not in LMFDB)
6.2.ac_i_ao_bf_abs_cy$24$(not in LMFDB)
6.2.ab_a_b_ab_ae_s$24$(not in LMFDB)
6.2.ab_e_ad_h_ai_o$24$(not in LMFDB)
6.2.a_c_ac_f_ac_u$24$(not in LMFDB)
6.2.a_c_c_f_c_u$24$(not in LMFDB)
6.2.a_e_ac_l_ag_bc$24$(not in LMFDB)
6.2.a_e_c_l_g_bc$24$(not in LMFDB)
6.2.b_a_ab_ab_e_s$24$(not in LMFDB)
6.2.b_e_d_h_i_o$24$(not in LMFDB)
6.2.c_ac_ag_b_e_ae$24$(not in LMFDB)
6.2.c_a_ac_ab_ae_am$24$(not in LMFDB)
6.2.c_a_ac_f_i_g$24$(not in LMFDB)
6.2.c_c_c_h_i_k$24$(not in LMFDB)
6.2.c_e_g_n_q_ba$24$(not in LMFDB)
6.2.c_g_k_r_u_bk$24$(not in LMFDB)
6.2.c_g_k_x_bg_cc$24$(not in LMFDB)
6.2.c_i_o_bf_bs_cy$24$(not in LMFDB)
6.2.e_k_s_bd_bm_ca$24$(not in LMFDB)
6.2.e_m_ba_bz_de_eu$24$(not in LMFDB)
6.2.f_m_t_x_u_s$24$(not in LMFDB)
6.2.f_q_bn_db_fg_hy$24$(not in LMFDB)