Properties

Label 6.2.ad_h_am_r_au_bd
Base field $\F_{2}$
Dimension $6$
$p$-rank $6$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Downloads

Learn more

Invariants

Base field:  $\F_{2}$
Dimension:  $6$
L-polynomial:  $1 - 3 x + 7 x^{2} - 12 x^{3} + 17 x^{4} - 20 x^{5} + 29 x^{6} - 40 x^{7} + 68 x^{8} - 96 x^{9} + 112 x^{10} - 96 x^{11} + 64 x^{12}$
Frobenius angles:  $\pm0.133697449860$, $\pm0.184772415084$, $\pm0.396565339023$, $\pm0.486112470475$, $\pm0.571022472996$, $\pm0.811784262314$
Angle rank:  $6$ (numerical)
Number field:  12.0.15063571002607033433.1
Galois group:  12T293
Jacobians:  $0$
Cyclic group of points:    yes

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $6$
Slopes:  $[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $31$ $17515$ $416299$ $14800175$ $1066374611$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $0$ $10$ $9$ $14$ $35$ $121$ $154$ $294$ $567$ $895$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{2}$.

Endomorphism algebra over $\F_{2}$
The endomorphism algebra of this simple isogeny class is 12.0.15063571002607033433.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
6.2.d_h_m_r_u_bd$2$(not in LMFDB)