Properties

Label 6.2.ac_f_ak_s_abc_bx
Base field $\F_{2}$
Dimension $6$
$p$-rank $6$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Downloads

Learn more

Invariants

Base field:  $\F_{2}$
Dimension:  $6$
L-polynomial:  $( 1 - x + 2 x^{2} - 3 x^{3} + 4 x^{4} - 4 x^{5} + 8 x^{6} )^{2}$
  $1 - 2 x + 5 x^{2} - 10 x^{3} + 18 x^{4} - 28 x^{5} + 49 x^{6} - 56 x^{7} + 72 x^{8} - 80 x^{9} + 80 x^{10} - 64 x^{11} + 64 x^{12}$
Frobenius angles:  $\pm0.164170413030$, $\pm0.164170413030$, $\pm0.473057015341$, $\pm0.473057015341$, $\pm0.705194715932$, $\pm0.705194715932$
Angle rank:  $3$ (numerical)
Jacobians:  $0$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $6$
Slopes:  $[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $49$ $25921$ $117649$ $21799561$ $1499006089$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $1$ $11$ $1$ $23$ $41$ $101$ $239$ $215$ $415$ $1181$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{2}$.

Endomorphism algebra over $\F_{2}$
The isogeny class factors as 3.2.ab_c_ad 2 and its endomorphism algebra is $\mathrm{M}_{2}($6.0.8140239.1$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
6.2.a_d_a_g_a_p$2$(not in LMFDB)
6.2.c_f_k_s_bc_bx$2$(not in LMFDB)
6.2.b_ab_ae_ad_c_n$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
6.2.a_d_a_g_a_p$2$(not in LMFDB)
6.2.c_f_k_s_bc_bx$2$(not in LMFDB)
6.2.b_ab_ae_ad_c_n$3$(not in LMFDB)
6.2.a_ad_a_g_a_ap$4$(not in LMFDB)
6.2.ab_ab_e_ad_ac_n$6$(not in LMFDB)