Properties

Label 5.3.b_h_f_bb_l
Base field $\F_{3}$
Dimension $5$
$p$-rank $5$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes

Downloads

Learn more

Invariants

Base field:  $\F_{3}$
Dimension:  $5$
L-polynomial:  $1 + x + 7 x^{2} + 5 x^{3} + 27 x^{4} + 11 x^{5} + 81 x^{6} + 45 x^{7} + 189 x^{8} + 81 x^{9} + 243 x^{10}$
Frobenius angles:  $\pm0.228503896346$, $\pm0.440029839259$, $\pm0.488515155577$, $\pm0.686691898357$, $\pm0.752115552815$
Angle rank:  $5$ (numerical)
Number field:  10.0.1495458993291875.1
Galois group:  $C_2 \wr S_5$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $5$
Slopes:  $[0, 0, 0, 0, 0, 1, 1, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $691$ $279855$ $12198223$ $4154447475$ $786464843111$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $5$ $23$ $23$ $99$ $225$ $779$ $2413$ $6099$ $19013$ $59463$

Jacobians and polarizations

This isogeny class is principally polarizable and contains no Jacobian of a hyperelliptic curve, but it is unknown whether it contains a Jacobian of a non-hyperelliptic curve.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{3}$.

Endomorphism algebra over $\F_{3}$
The endomorphism algebra of this simple isogeny class is 10.0.1495458993291875.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
5.3.ab_h_af_bb_al$2$(not in LMFDB)