Properties

Label 5.3.af_r_abu_dy_ahm
Base field $\F_{3}$
Dimension $5$
$p$-rank $5$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Downloads

Learn more

Invariants

Base field:  $\F_{3}$
Dimension:  $5$
L-polynomial:  $1 - 5 x + 17 x^{2} - 46 x^{3} + 102 x^{4} - 194 x^{5} + 306 x^{6} - 414 x^{7} + 459 x^{8} - 405 x^{9} + 243 x^{10}$
Frobenius angles:  $\pm0.0374447078939$, $\pm0.259599260360$, $\pm0.391682006333$, $\pm0.558518149638$, $\pm0.626189263211$
Angle rank:  $5$ (numerical)
Number field:  10.0.349098857617088.1
Galois group:  $C_2 \wr S_5$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $5$
Slopes:  $[0, 0, 0, 0, 0, 1, 1, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $64$ $140288$ $10019584$ $2911256576$ $893599673024$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $-1$ $19$ $20$ $67$ $259$ $640$ $1987$ $6603$ $19550$ $58079$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{3}$.

Endomorphism algebra over $\F_{3}$
The endomorphism algebra of this simple isogeny class is 10.0.349098857617088.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
5.3.f_r_bu_dy_hm$2$(not in LMFDB)