Invariants
Base field: | $\F_{5}$ |
Dimension: | $4$ |
L-polynomial: | $( 1 + 4 x + 5 x^{2} )^{2}( 1 - 2 x - x^{2} - 10 x^{3} + 25 x^{4} )$ |
$1 + 6 x + 9 x^{2} - 30 x^{3} - 136 x^{4} - 150 x^{5} + 225 x^{6} + 750 x^{7} + 625 x^{8}$ | |
Frobenius angles: | $\pm0.0190830490162$, $\pm0.685749715683$, $\pm0.852416382350$, $\pm0.852416382350$ |
Angle rank: | $1$ (numerical) |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $4$ |
Slopes: | $[0, 0, 0, 0, 1, 1, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1300$ | $192400$ | $182790400$ | $156234956800$ | $88493687132500$ |
Point counts of the (virtual) curve
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $12$ | $8$ | $90$ | $640$ | $2892$ | $15626$ | $76956$ | $391680$ | $1945458$ | $9767048$ |
Jacobians and polarizations
This isogeny class is principally polarizable, but does not contain a Jacobian.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{5^{12}}$.
Endomorphism algebra over $\F_{5}$The isogeny class factors as 1.5.e 2 $\times$ 2.5.ac_ab and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
|
The base change of $A$ to $\F_{5^{12}}$ is 1.244140625.abiuc 4 and its endomorphism algebra is $\mathrm{M}_{4}($\(\Q(\sqrt{-1}) \)$)$ |
- Endomorphism algebra over $\F_{5^{2}}$
The base change of $A$ to $\F_{5^{2}}$ is 1.25.ag 2 $\times$ 2.25.ag_l. The endomorphism algebra for each factor is: - 1.25.ag 2 : $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$
- 2.25.ag_l : \(\Q(\zeta_{12})\).
- Endomorphism algebra over $\F_{5^{3}}$
The base change of $A$ to $\F_{5^{3}}$ is 1.125.aw 2 $\times$ 1.125.e 2 . The endomorphism algebra for each factor is: - 1.125.aw 2 : $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$
- 1.125.e 2 : $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$
- Endomorphism algebra over $\F_{5^{4}}$
The base change of $A$ to $\F_{5^{4}}$ is 1.625.o 2 $\times$ 2.625.ao_aqn. The endomorphism algebra for each factor is: - 1.625.o 2 : $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$
- 2.625.ao_aqn : \(\Q(\zeta_{12})\).
- Endomorphism algebra over $\F_{5^{6}}$
The base change of $A$ to $\F_{5^{6}}$ is 1.15625.aja 2 $\times$ 1.15625.ja 2 . The endomorphism algebra for each factor is: - 1.15625.aja 2 : $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$
- 1.15625.ja 2 : $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$
Base change
This is a primitive isogeny class.