Invariants
Base field: | $\F_{5}$ |
Dimension: | $4$ |
L-polynomial: | $1 + 3 x + 11 x^{2} + 24 x^{3} + 54 x^{4} + 120 x^{5} + 275 x^{6} + 375 x^{7} + 625 x^{8}$ |
Frobenius angles: | $\pm0.276642081063$, $\pm0.524248544986$, $\pm0.609975414396$, $\pm0.857581878319$ |
Angle rank: | $2$ (numerical) |
Number field: | 8.0.82653950016.2 |
Galois group: | $D_4\times C_2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $4$ |
Slopes: | $[0, 0, 0, 0, 1, 1, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1488$ | $660672$ | $245769984$ | $152887428864$ | $99219782296848$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $9$ | $39$ | $126$ | $627$ | $3249$ | $15834$ | $76365$ | $390915$ | $1953126$ | $9770319$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:
- $y^2=x^{10}+4 x^9+4 x^8+3 x^6+4 x^5+4 x^4+4 x^3+3 x^2+2 x$
- $y^2=2 x^9+2 x^8+3 x^7+2 x^5+2 x^4+x^3+4 x^2+1$
- $y^2=2 x^9+3 x^8+4 x^7+3 x^6+x^4+x^3+4 x^2+4 x+4$
- $y^2=x^{10}+2 x^9+3 x^8+4 x^7+2 x^6+x^5+x^4+4 x^3+2 x^2+2 x+4$
- $y^2=x^9+4 x^8+x^7+2 x^6+4 x^4+3 x^3+2 x^2+4$
- $y^2=x^{10}+3 x^9+2 x^8+3 x^7+3 x^5+x^4+x^3+2 x^2+2 x+1$
- $y^2=x^{10}+x^8+4 x^7+2 x^5+3 x^4+x^3+4 x^2+x+4$
- $y^2=2 x^9+2 x^8+4 x^7+4 x^6+4 x^5+2 x^4+3 x^2+4 x+4$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{5^{6}}$.
Endomorphism algebra over $\F_{5}$The endomorphism algebra of this simple isogeny class is 8.0.82653950016.2. |
The base change of $A$ to $\F_{5^{6}}$ is 2.15625.ea_ghq 2 and its endomorphism algebra is $\mathrm{M}_{2}($4.0.287496.1$)$ |
- Endomorphism algebra over $\F_{5^{2}}$
The base change of $A$ to $\F_{5^{2}}$ is the simple isogeny class 4.25.n_dh_ra_dgw and its endomorphism algebra is 8.0.82653950016.2. - Endomorphism algebra over $\F_{5^{3}}$
The base change of $A$ to $\F_{5^{3}}$ is the simple isogeny class 4.125.a_ea_a_ghq and its endomorphism algebra is 8.0.82653950016.2.
Base change
This is a primitive isogeny class.