Invariants
Base field: | $\F_{5}$ |
Dimension: | $4$ |
L-polynomial: | $1 + 2 x + 2 x^{2} + 8 x^{3} + 31 x^{4} + 40 x^{5} + 50 x^{6} + 250 x^{7} + 625 x^{8}$ |
Frobenius angles: | $\pm0.213073691352$, $\pm0.392183190680$, $\pm0.713073691352$, $\pm0.892183190680$ |
Angle rank: | $2$ (numerical) |
Number field: | 8.0.2136658176.4 |
Galois group: | $D_4\times C_2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $4$ |
Slopes: | $[0, 0, 0, 0, 1, 1, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1009$ | $412681$ | $286200832$ | $170305607761$ | $94215066004849$ |
Point counts of the (virtual) curve
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $8$ | $26$ | $146$ | $694$ | $3088$ | $15626$ | $78688$ | $391398$ | $1946666$ | $9765626$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains no Jacobian of a hyperelliptic curve, but it is unknown whether it contains a Jacobian of a non-hyperelliptic curve.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{5^{4}}$.
Endomorphism algebra over $\F_{5}$The endomorphism algebra of this simple isogeny class is 8.0.2136658176.4. |
The base change of $A$ to $\F_{5^{4}}$ is 2.625.bi_bdr 2 and its endomorphism algebra is $\mathrm{M}_{2}($4.0.46224.1$)$ |
- Endomorphism algebra over $\F_{5^{2}}$
The base change of $A$ to $\F_{5^{2}}$ is the simple isogeny class 4.25.a_bi_a_bdr and its endomorphism algebra is 8.0.2136658176.4.
Base change
This is a primitive isogeny class.