Invariants
| Base field: | $\F_{5}$ |
| Dimension: | $4$ |
| L-polynomial: | $( 1 - 2 x + 4 x^{2} - 10 x^{3} + 25 x^{4} )^{2}$ |
| $1 - 4 x + 12 x^{2} - 36 x^{3} + 106 x^{4} - 180 x^{5} + 300 x^{6} - 500 x^{7} + 625 x^{8}$ | |
| Frobenius angles: | $\pm0.196618866693$, $\pm0.196618866693$, $\pm0.619957764542$, $\pm0.619957764542$ |
| Angle rank: | $2$ (numerical) |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 3$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $4$ |
| Slopes: | $[0, 0, 0, 0, 1, 1, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $324$ | $571536$ | $195608196$ | $171634546944$ | $109520787787524$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $2$ | $34$ | $98$ | $698$ | $3562$ | $15730$ | $78010$ | $392538$ | $1947554$ | $9743074$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 3 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:
- $y^2=2 x^{10}+x^9+3 x^8+x^7+2 x^6+x^4+x^3+4 x^2+3$
- $y^2=2 x^{10}+x^9+2 x^7+4 x^6+3 x^4+x^3+3 x^2+x+1$
- $y^2=2 x^{10}+x^9+2 x^8+4 x^6+4 x^5+3 x^3+2$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{5}$.
Endomorphism algebra over $\F_{5}$| The isogeny class factors as 2.5.ac_e 2 and its endomorphism algebra is $\mathrm{M}_{2}($4.0.90944.1$)$ |
Base change
This is a primitive isogeny class.