Invariants
Base field: | $\F_{5}$ |
Dimension: | $4$ |
L-polynomial: | $( 1 + 2 x^{2} + 25 x^{4} )^{2}$ |
$1 + 4 x^{2} + 54 x^{4} + 100 x^{6} + 625 x^{8}$ | |
Frobenius angles: | $\pm0.282047108424$, $\pm0.282047108424$, $\pm0.717952891576$, $\pm0.717952891576$ |
Angle rank: | $1$ (numerical) |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $4$ |
Slopes: | $[0, 0, 0, 0, 1, 1, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $784$ | $614656$ | $239754256$ | $203928109056$ | $95470643144464$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $6$ | $34$ | $126$ | $810$ | $3126$ | $15058$ | $78126$ | $387162$ | $1953126$ | $9786754$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:
- $y^2=x^{10}+3 x^9+3 x^8+3 x^6+x^5+4 x^3+x+1$
- $y^2=x^{10}+4 x^9+2 x^8+x^7+4 x^6+4 x^5+3 x^4+4 x^3+x^2+4 x+2$
- $y^2=x^{10}+2 x^8+x^7+2 x^6+2 x^4+4 x^2+2 x+4$
- $y^2=x^9+2 x^8+4 x^7+3 x^6+3 x^4+x^3+2 x^2+3$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{5^{2}}$.
Endomorphism algebra over $\F_{5}$The isogeny class factors as 2.5.a_c 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{2}, \sqrt{-3})\)$)$ |
The base change of $A$ to $\F_{5^{2}}$ is 1.25.c 4 and its endomorphism algebra is $\mathrm{M}_{4}($\(\Q(\sqrt{-6}) \)$)$ |
Base change
This is a primitive isogeny class.