Properties

Label 4.2.c_f_g_l
Base field $\F_{2}$
Dimension $4$
$p$-rank $4$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Downloads

Learn more

Invariants

Base field:  $\F_{2}$
Dimension:  $4$
L-polynomial:  $1 + 2 x + 5 x^{2} + 6 x^{3} + 11 x^{4} + 12 x^{5} + 20 x^{6} + 16 x^{7} + 16 x^{8}$
Frobenius angles:  $\pm0.284109330992$, $\pm0.520934539747$, $\pm0.659718070509$, $\pm0.788797001508$
Angle rank:  $4$ (numerical)
Number field:  8.0.4964356096.1
Galois group:  $C_2 \wr C_2\wr C_2$
Jacobians:  $0$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $4$
Slopes:  $[0, 0, 0, 0, 1, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $89$ $1513$ $2492$ $110449$ $1138399$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $5$ $11$ $5$ $27$ $35$ $65$ $103$ $211$ $545$ $1091$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{2}$.

Endomorphism algebra over $\F_{2}$
The endomorphism algebra of this simple isogeny class is 8.0.4964356096.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
4.2.ac_f_ag_l$2$4.4.g_x_co_fp