Properties

Label 4.2.ae_k_at_bd
Base field $\F_{2}$
Dimension $4$
$p$-rank $4$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Downloads

Learn more

Invariants

Base field:  $\F_{2}$
Dimension:  $4$
L-polynomial:  $1 - 4 x + 10 x^{2} - 19 x^{3} + 29 x^{4} - 38 x^{5} + 40 x^{6} - 32 x^{7} + 16 x^{8}$
Frobenius angles:  $\pm0.0680619431455$, $\pm0.295621907445$, $\pm0.431537592529$, $\pm0.622459114596$
Angle rank:  $4$ (numerical)
Number field:  8.0.371495353.1
Galois group:  $C_2 \wr S_4$
Jacobians:  $0$
Isomorphism classes:  1

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $4$
Slopes:  $[0, 0, 0, 0, 1, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3$ $567$ $3033$ $54999$ $935733$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $-1$ $9$ $8$ $13$ $29$ $42$ $118$ $285$ $494$ $1039$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{2}$.

Endomorphism algebra over $\F_{2}$
The endomorphism algebra of this simple isogeny class is 8.0.371495353.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
4.2.e_k_t_bd$2$4.4.e_g_af_abb