Properties

Label 4.2.ad_d_ab_a
Base field $\F_{2}$
Dimension $4$
$p$-rank $3$
Ordinary no
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Downloads

Learn more

Invariants

Base field:  $\F_{2}$
Dimension:  $4$
L-polynomial:  $1 - 3 x + 3 x^{2} - x^{3} - 2 x^{5} + 12 x^{6} - 24 x^{7} + 16 x^{8}$
Frobenius angles:  $\pm0.0463788985841$, $\pm0.192275575577$, $\pm0.470973923744$, $\pm0.819122030567$
Angle rank:  $4$ (numerical)
Number field:  8.0.5198736512.1
Galois group:  $C_2 \wr S_4$
Jacobians:  $1$

This isogeny class is simple and geometrically simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1/2, 1/2, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2$ $124$ $3482$ $50096$ $675422$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $0$ $2$ $6$ $14$ $20$ $98$ $126$ $222$ $456$ $942$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobian of 1 curve (which is not hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{2}$.

Endomorphism algebra over $\F_{2}$
The endomorphism algebra of this simple isogeny class is 8.0.5198736512.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
4.2.d_d_b_a$2$4.4.ad_d_l_abs