Invariants
| Base field: | $\F_{2}$ |
| Dimension: | $4$ |
| L-polynomial: | $1 - x + 3 x^{4} - 8 x^{7} + 16 x^{8}$ |
| Frobenius angles: | $\pm0.142014315702$, $\pm0.271261639785$, $\pm0.607066675494$, $\pm0.840353784243$ |
| Angle rank: | $4$ (numerical) |
| Number field: | 8.0.2917030625.1 |
| Galois group: | $C_2 \wr C_2\wr C_2$ |
| Jacobians: | $1$ |
| Cyclic group of points: | yes |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $4$ |
| Slopes: | $[0, 0, 0, 0, 1, 1, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $11$ | $319$ | $4169$ | $143231$ | $1600951$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $2$ | $4$ | $8$ | $28$ | $47$ | $82$ | $93$ | $308$ | $530$ | $999$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobian of 1 curve (which is not hyperelliptic):
- $x^2+x y+y^2+z t=x^2 y+y^3+x^2 z+y^2 z+y z^2+x^2 t+x t^2=0$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{2}$.
Endomorphism algebra over $\F_{2}$| The endomorphism algebra of this simple isogeny class is 8.0.2917030625.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 4.2.b_a_a_d | $2$ | 4.4.ab_g_a_z |