Properties

Label 4.2.ab_a_a_d
Base field $\F_{2}$
Dimension $4$
$p$-rank $4$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Downloads

Learn more

Invariants

Base field:  $\F_{2}$
Dimension:  $4$
L-polynomial:  $1 - x + 3 x^{4} - 8 x^{7} + 16 x^{8}$
Frobenius angles:  $\pm0.142014315702$, $\pm0.271261639785$, $\pm0.607066675494$, $\pm0.840353784243$
Angle rank:  $4$ (numerical)
Number field:  8.0.2917030625.1
Galois group:  $C_2 \wr C_2\wr C_2$
Jacobians:  $1$
Cyclic group of points:    yes

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $4$
Slopes:  $[0, 0, 0, 0, 1, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $11$ $319$ $4169$ $143231$ $1600951$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $2$ $4$ $8$ $28$ $47$ $82$ $93$ $308$ $530$ $999$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobian of 1 curve (which is not hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{2}$.

Endomorphism algebra over $\F_{2}$
The endomorphism algebra of this simple isogeny class is 8.0.2917030625.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
4.2.b_a_a_d$2$4.4.ab_g_a_z