Invariants
Base field: | $\F_{2}$ |
Dimension: | $4$ |
L-polynomial: | $( 1 - x - x^{2} - 2 x^{3} + 4 x^{4} )( 1 + x - x^{2} + 2 x^{3} + 4 x^{4} )$ |
$1 - 3 x^{2} + 5 x^{4} - 12 x^{6} + 16 x^{8}$ | |
Frobenius angles: | $\pm0.0516399385854$, $\pm0.281693394748$, $\pm0.718306605252$, $\pm0.948360061415$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $0$ |
Isomorphism classes: | 8 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $4$ |
Slopes: | $[0, 0, 0, 0, 1, 1, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $7$ | $49$ | $3136$ | $67081$ | $1109227$ |
Point counts of the (virtual) curve
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $3$ | $-1$ | $9$ | $19$ | $33$ | $29$ | $129$ | $195$ | $513$ | $1139$ |
Jacobians and polarizations
This isogeny class is principally polarizable, but does not contain a Jacobian.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{2^{6}}$.
Endomorphism algebra over $\F_{2}$The isogeny class factors as 2.2.ab_ab $\times$ 2.2.b_ab and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{2^{6}}$ is 1.64.aj 4 and its endomorphism algebra is $\mathrm{M}_{4}($\(\Q(\sqrt{-7}) \)$)$ |
- Endomorphism algebra over $\F_{2^{2}}$
The base change of $A$ to $\F_{2^{2}}$ is 2.4.ad_f 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}, \sqrt{-7})\)$)$ - Endomorphism algebra over $\F_{2^{3}}$
The base change of $A$ to $\F_{2^{3}}$ is 1.8.af 2 $\times$ 1.8.f 2 . The endomorphism algebra for each factor is: - 1.8.af 2 : $\mathrm{M}_{2}($\(\Q(\sqrt{-7}) \)$)$
- 1.8.f 2 : $\mathrm{M}_{2}($\(\Q(\sqrt{-7}) \)$)$
Base change
This is a primitive isogeny class.