Properties

Label 4.2.a_ad_a_f
Base field $\F_{2}$
Dimension $4$
$p$-rank $4$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Downloads

Learn more

Invariants

Base field:  $\F_{2}$
Dimension:  $4$
L-polynomial:  $( 1 - x - x^{2} - 2 x^{3} + 4 x^{4} )( 1 + x - x^{2} + 2 x^{3} + 4 x^{4} )$
  $1 - 3 x^{2} + 5 x^{4} - 12 x^{6} + 16 x^{8}$
Frobenius angles:  $\pm0.0516399385854$, $\pm0.281693394748$, $\pm0.718306605252$, $\pm0.948360061415$
Angle rank:  $1$ (numerical)
Jacobians:  $0$
Isomorphism classes:  8

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $4$
Slopes:  $[0, 0, 0, 0, 1, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $7$ $49$ $3136$ $67081$ $1109227$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $3$ $-1$ $9$ $19$ $33$ $29$ $129$ $195$ $513$ $1139$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{2^{6}}$.

Endomorphism algebra over $\F_{2}$
The isogeny class factors as 2.2.ab_ab $\times$ 2.2.b_ab and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{2}$
The base change of $A$ to $\F_{2^{6}}$ is 1.64.aj 4 and its endomorphism algebra is $\mathrm{M}_{4}($\(\Q(\sqrt{-7}) \)$)$
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
4.2.ac_ab_ac_n$2$4.4.ag_t_acc_ez
4.2.c_ab_c_n$2$4.4.ag_t_acc_ez
4.2.ad_g_aj_l$3$(not in LMFDB)
4.2.a_g_a_r$3$(not in LMFDB)
4.2.d_g_j_l$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
4.2.ac_ab_ac_n$2$4.4.ag_t_acc_ez
4.2.c_ab_c_n$2$4.4.ag_t_acc_ez
4.2.ad_g_aj_l$3$(not in LMFDB)
4.2.a_g_a_r$3$(not in LMFDB)
4.2.d_g_j_l$3$(not in LMFDB)
4.2.a_d_a_f$4$(not in LMFDB)
4.2.ae_o_abc_bx$6$(not in LMFDB)
4.2.ac_i_ak_x$6$(not in LMFDB)
4.2.ab_c_af_f$6$(not in LMFDB)
4.2.ab_c_f_af$6$(not in LMFDB)
4.2.b_c_af_af$6$(not in LMFDB)
4.2.b_c_f_f$6$(not in LMFDB)
4.2.c_i_k_x$6$(not in LMFDB)
4.2.e_o_bc_bx$6$(not in LMFDB)
4.2.ac_c_c_ah$12$(not in LMFDB)
4.2.ab_ae_b_l$12$(not in LMFDB)
4.2.a_ag_a_r$12$(not in LMFDB)
4.2.a_a_a_ab$12$(not in LMFDB)
4.2.b_ae_ab_l$12$(not in LMFDB)
4.2.c_c_ac_ah$12$(not in LMFDB)
4.2.a_a_a_b$24$(not in LMFDB)
4.2.ab_ab_d_ab$30$(not in LMFDB)
4.2.b_ab_ad_ab$30$(not in LMFDB)
4.2.af_p_abg_bz$42$(not in LMFDB)
4.2.ae_h_ah_h$42$(not in LMFDB)
4.2.ad_h_ao_v$42$(not in LMFDB)
4.2.ac_b_ad_j$42$(not in LMFDB)
4.2.c_b_d_j$42$(not in LMFDB)
4.2.d_h_o_v$42$(not in LMFDB)
4.2.e_h_h_h$42$(not in LMFDB)
4.2.f_p_bg_bz$42$(not in LMFDB)