The only example of a hyperspecial abelian variety of dimension greater than 1 in the LMFDB (see Chai-Oort [10.4310/PAMQ.2006.v2.n1.a2]).
Invariants
Base field: | $\F_{2^{3}}$ |
Dimension: | $3$ |
L-polynomial: | $( 1 - 2 x + 8 x^{2} )^{3}$ |
$1 - 6 x + 36 x^{2} - 104 x^{3} + 288 x^{4} - 384 x^{5} + 512 x^{6}$ | |
Frobenius angles: | $\pm0.384973271919$, $\pm0.384973271919$, $\pm0.384973271919$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-7}) \) |
Galois group: | $C_2$ |
This isogeny class is simple and geometrically simple, not primitive, not ordinary, and not supersingular. It is principally polarizable.
Newton polygon
$p$-rank: | $0$ |
Slopes: | $[1/3, 1/3, 1/3, 2/3, 2/3, 2/3]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $343$ | $456533$ | $169112377$ | $67967263441$ | $34065789855713$ |
Point counts of the (virtual) curve
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $3$ | $101$ | $633$ | $4049$ | $31713$ | $260417$ | $2102145$ | $16801025$ | $134225409$ | $1073566721$ |
Jacobians and polarizations
This isogeny class is principally polarizable, but it is unknown whether it contains a Jacobian.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{2^{3}}$.
Endomorphism algebra over $\F_{2^{3}}$The endomorphism algebra of this simple isogeny class is the division algebra of dimension 9 over \(\Q(\sqrt{-7}) \) with the following ramification data at primes above $2$, and unramified at all archimedean places: | ||||||
|
Base change
This isogeny class is not primitive. It is a base change from the following isogeny classes over subfields of $\F_{2^{3}}$.
Subfield | Primitive Model |
$\F_{2}$ | 3.2.a_a_ac |