Properties

Label 3.7.ak_bz_agj
Base field $\F_{7}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{7}$
Dimension:  $3$
L-polynomial:  $( 1 - 5 x + 7 x^{2} )( 1 - 5 x + 19 x^{2} - 35 x^{3} + 49 x^{4} )$
  $1 - 10 x + 51 x^{2} - 165 x^{3} + 357 x^{4} - 490 x^{5} + 343 x^{6}$
Frobenius angles:  $\pm0.106147807505$, $\pm0.260350433790$, $\pm0.415892662795$
Angle rank:  $3$ (numerical)
Isomorphism classes:  3

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $87$ $123279$ $44715564$ $13994755359$ $4726539147312$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $-2$ $52$ $379$ $2428$ $16733$ $117793$ $825004$ $5766916$ $40351393$ $282489467$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{7}$.

Endomorphism algebra over $\F_{7}$
The isogeny class factors as 1.7.af $\times$ 2.7.af_t and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
3.7.a_b_az$2$(not in LMFDB)
3.7.a_b_z$2$(not in LMFDB)
3.7.k_bz_gj$2$(not in LMFDB)
3.7.ae_v_abz$3$(not in LMFDB)
3.7.ab_g_g$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.7.a_b_az$2$(not in LMFDB)
3.7.a_b_z$2$(not in LMFDB)
3.7.k_bz_gj$2$(not in LMFDB)
3.7.ae_v_abz$3$(not in LMFDB)
3.7.ab_g_g$3$(not in LMFDB)
3.7.aj_bu_afq$6$(not in LMFDB)
3.7.ag_bf_adl$6$(not in LMFDB)
3.7.b_g_ag$6$(not in LMFDB)
3.7.e_v_bz$6$(not in LMFDB)
3.7.g_bf_dl$6$(not in LMFDB)
3.7.j_bu_fq$6$(not in LMFDB)