Properties

Label 3.7.ae_q_abv
Base field $\F_{7}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{7}$
Dimension:  $3$
L-polynomial:  $1 - 4 x + 16 x^{2} - 47 x^{3} + 112 x^{4} - 196 x^{5} + 343 x^{6}$
Frobenius angles:  $\pm0.157280763488$, $\pm0.433397922104$, $\pm0.607782259013$
Angle rank:  $3$ (numerical)
Number field:  6.0.940332987.1
Galois group:  $S_4\times C_2$
Isomorphism classes:  40
Cyclic group of points:    no
Non-cyclic primes:   $3$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $225$ $161775$ $38946825$ $13576966875$ $4814211049875$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $4$ $66$ $331$ $2354$ $17044$ $118233$ $825808$ $5772962$ $40346044$ $282418266$

Jacobians and polarizations

This isogeny class is principally polarizable and contains no Jacobian of a hyperelliptic curve, but it is unknown whether it contains a Jacobian of a non-hyperelliptic curve.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{7}$.

Endomorphism algebra over $\F_{7}$
The endomorphism algebra of this simple isogeny class is 6.0.940332987.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.7.e_q_bv$2$(not in LMFDB)