Properties

Label 3.7.ac_b_w
Base field $\F_{7}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{7}$
Dimension:  $3$
L-polynomial:  $1 - 2 x + x^{2} + 22 x^{3} + 7 x^{4} - 98 x^{5} + 343 x^{6}$
Frobenius angles:  $\pm0.244912085218$, $\pm0.319914035316$, $\pm0.840067488833$
Angle rank:  $3$ (numerical)
Number field:  6.0.38463424.1
Galois group:  $S_4\times C_2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $274$ $117820$ $48647878$ $15055039600$ $4721742428674$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $6$ $48$ $408$ $2604$ $16716$ $117732$ $819398$ $5763996$ $40352826$ $282486828$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 3 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{7}$.

Endomorphism algebra over $\F_{7}$
The endomorphism algebra of this simple isogeny class is 6.0.38463424.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.7.c_b_aw$2$(not in LMFDB)