Invariants
| Base field: | $\F_{7}$ |
| Dimension: | $3$ |
| L-polynomial: | $1 + 5 x^{2} + 18 x^{3} + 35 x^{4} + 343 x^{6}$ |
| Frobenius angles: | $\pm0.291094381517$, $\pm0.424344988283$, $\pm0.820776537321$ |
| Angle rank: | $3$ (numerical) |
| Number field: | 6.0.216207903168.1 |
| Galois group: | $S_4\times C_2$ |
| Isomorphism classes: | 40 |
| Cyclic group of points: | yes |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $3$ |
| Slopes: | $[0, 0, 0, 1, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $402$ | $147132$ | $47290878$ | $14370088176$ | $4621979732442$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $8$ | $60$ | $398$ | $2492$ | $16358$ | $117936$ | $822284$ | $5764892$ | $40351988$ | $282456600$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 5 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:
- $y^2=x^8+2 x^5+x^4+6 x^3+6 x^2+5 x+6$
- $y^2=x^8+3 x^5+3 x^4+6 x^3+3 x^2+2 x+6$
- $y^2=x^8+x^6+3 x^3+3 x^2+x+3$
- $y^2=x^8+x^6+x^5+5 x^3+6 x^2+5 x+6$
- $y^2=x^8+x^6+2 x^5+3 x^4+6 x^3+4 x^2+x+1$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{7}$.
Endomorphism algebra over $\F_{7}$| The endomorphism algebra of this simple isogeny class is 6.0.216207903168.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 3.7.a_f_as | $2$ | (not in LMFDB) |