Properties

Label 3.7.a_f_s
Base field $\F_{7}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{7}$
Dimension:  $3$
L-polynomial:  $1 + 5 x^{2} + 18 x^{3} + 35 x^{4} + 343 x^{6}$
Frobenius angles:  $\pm0.291094381517$, $\pm0.424344988283$, $\pm0.820776537321$
Angle rank:  $3$ (numerical)
Number field:  6.0.216207903168.1
Galois group:  $S_4\times C_2$
Isomorphism classes:  40
Cyclic group of points:    yes

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $402$ $147132$ $47290878$ $14370088176$ $4621979732442$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $8$ $60$ $398$ $2492$ $16358$ $117936$ $822284$ $5764892$ $40351988$ $282456600$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 5 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{7}$.

Endomorphism algebra over $\F_{7}$
The endomorphism algebra of this simple isogeny class is 6.0.216207903168.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.7.a_f_as$2$(not in LMFDB)