Properties

Label 3.5.k_bv_fc
Base field $\F_{5}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{5}$
Dimension:  $3$
L-polynomial:  $( 1 + 2 x + 5 x^{2} )( 1 + 4 x + 5 x^{2} )^{2}$
  $1 + 10 x + 47 x^{2} + 132 x^{3} + 235 x^{4} + 250 x^{5} + 125 x^{6}$
Frobenius angles:  $\pm0.647583617650$, $\pm0.852416382350$, $\pm0.852416382350$
Angle rank:  $1$ (numerical)
Jacobians:  $1$
Cyclic group of points:    no
Non-cyclic primes:   $2, 5$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $800$ $12800$ $1757600$ $262144000$ $29842420000$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $16$ $20$ $112$ $668$ $3056$ $15860$ $77072$ $393788$ $1947856$ $9766100$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobian of 1 curve (which is not hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{5^{4}}$.

Endomorphism algebra over $\F_{5}$
The isogeny class factors as 1.5.c $\times$ 1.5.e 2 and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{5}$
The base change of $A$ to $\F_{5^{4}}$ is 1.625.o 3 and its endomorphism algebra is $\mathrm{M}_{3}($\(\Q(\sqrt{-1}) \)$)$
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
3.5.ak_bv_afc$2$3.25.ag_bn_adg
3.5.ag_p_abc$2$3.25.ag_bn_adg
3.5.ac_ab_m$2$3.25.ag_bn_adg
3.5.c_ab_am$2$3.25.ag_bn_adg
3.5.g_p_bc$2$3.25.ag_bn_adg
3.5.ac_i_as$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.5.ak_bv_afc$2$3.25.ag_bn_adg
3.5.ag_p_abc$2$3.25.ag_bn_adg
3.5.ac_ab_m$2$3.25.ag_bn_adg
3.5.c_ab_am$2$3.25.ag_bn_adg
3.5.g_p_bc$2$3.25.ag_bn_adg
3.5.ac_i_as$3$(not in LMFDB)
3.5.am_cl_ahc$4$(not in LMFDB)
3.5.ai_bj_ads$4$(not in LMFDB)
3.5.ag_bb_acq$4$(not in LMFDB)
3.5.ae_ab_y$4$(not in LMFDB)
3.5.ae_l_ay$4$(not in LMFDB)
3.5.ac_l_am$4$(not in LMFDB)
3.5.a_d_aq$4$(not in LMFDB)
3.5.a_d_q$4$(not in LMFDB)
3.5.c_l_m$4$(not in LMFDB)
3.5.e_ab_ay$4$(not in LMFDB)
3.5.e_l_y$4$(not in LMFDB)
3.5.g_bb_cq$4$(not in LMFDB)
3.5.i_bj_ds$4$(not in LMFDB)
3.5.m_cl_hc$4$(not in LMFDB)
3.5.ag_y_ack$6$(not in LMFDB)
3.5.c_i_s$6$(not in LMFDB)
3.5.g_y_ck$6$(not in LMFDB)
3.5.ae_ad_bg$8$(not in LMFDB)
3.5.ae_n_abg$8$(not in LMFDB)
3.5.ac_ad_q$8$(not in LMFDB)
3.5.ac_n_aq$8$(not in LMFDB)
3.5.c_ad_aq$8$(not in LMFDB)
3.5.c_n_q$8$(not in LMFDB)
3.5.e_ad_abg$8$(not in LMFDB)
3.5.e_n_bg$8$(not in LMFDB)
3.5.ai_bg_adg$12$(not in LMFDB)
3.5.ag_m_aq$12$(not in LMFDB)
3.5.ae_i_as$12$(not in LMFDB)
3.5.ac_ae_y$12$(not in LMFDB)
3.5.ac_i_as$12$(not in LMFDB)
3.5.a_a_aw$12$(not in LMFDB)
3.5.a_a_ae$12$(not in LMFDB)
3.5.a_a_e$12$(not in LMFDB)
3.5.a_a_w$12$(not in LMFDB)
3.5.c_ae_ay$12$(not in LMFDB)
3.5.e_i_s$12$(not in LMFDB)
3.5.g_m_q$12$(not in LMFDB)
3.5.i_bg_dg$12$(not in LMFDB)