Properties

Label 3.5.f_u_bx
Base field $\F_{5}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{5}$
Dimension:  $3$
L-polynomial:  $1 + 5 x + 20 x^{2} + 49 x^{3} + 100 x^{4} + 125 x^{5} + 125 x^{6}$
Frobenius angles:  $\pm0.487890960542$, $\pm0.623266978817$, $\pm0.783977895487$
Angle rank:  $3$ (numerical)
Number field:  6.0.59118896.1
Galois group:  $S_4\times C_2$
Jacobians:  $4$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $425$ $28475$ $1572500$ $241952075$ $30267737125$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $11$ $41$ $98$ $621$ $3101$ $15848$ $78061$ $389861$ $1953998$ $9761301$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which 0 are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{5}$.

Endomorphism algebra over $\F_{5}$
The endomorphism algebra of this simple isogeny class is 6.0.59118896.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.5.af_u_abx$2$3.25.p_eg_xb