Properties

Label 3.5.c_h_x
Base field $\F_{5}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{5}$
Dimension:  $3$
L-polynomial:  $1 + 2 x + 7 x^{2} + 23 x^{3} + 35 x^{4} + 50 x^{5} + 125 x^{6}$
Frobenius angles:  $\pm0.376847748144$, $\pm0.469230501932$, $\pm0.872660818878$
Angle rank:  $3$ (numerical)
Number field:  6.0.1249779231.1
Galois group:  $S_4\times C_2$
Jacobians:  $5$
Cyclic group of points:    yes

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $243$ $22599$ $2601072$ $227278143$ $28602678528$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $8$ $36$ $161$ $580$ $2923$ $15849$ $78184$ $392228$ $1949417$ $9768591$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 5 curves (of which 0 are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{5}$.

Endomorphism algebra over $\F_{5}$
The endomorphism algebra of this simple isogeny class is 6.0.1249779231.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.5.ac_h_ax$2$3.25.k_bb_l