Properties

Label 3.5.ad_p_abb
Base field $\F_{5}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{5}$
Dimension:  $3$
L-polynomial:  $1 - 3 x + 15 x^{2} - 27 x^{3} + 75 x^{4} - 75 x^{5} + 125 x^{6}$
Frobenius angles:  $\pm0.308415961642$, $\pm0.402591248965$, $\pm0.563001890503$
Angle rank:  $3$ (numerical)
Number field:  6.0.31171311.1
Galois group:  $A_4\times C_2$
Jacobians:  $3$
Cyclic group of points:    yes

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $111$ $35631$ $2410587$ $238620807$ $30192774891$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $3$ $47$ $153$ $611$ $3093$ $15431$ $77556$ $391475$ $1956933$ $9762947$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 3 curves (of which 1 is hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{5}$.

Endomorphism algebra over $\F_{5}$
The endomorphism algebra of this simple isogeny class is 6.0.31171311.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.5.d_p_bb$2$3.25.v_if_byv