Properties

Label 3.4.f_p_bg
Base field $\F_{2^{2}}$
Dimension $3$
$p$-rank $2$
Ordinary no
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{2^{2}}$
Dimension:  $3$
L-polynomial:  $1 + 5 x + 15 x^{2} + 32 x^{3} + 60 x^{4} + 80 x^{5} + 64 x^{6}$
Frobenius angles:  $\pm0.424864887553$, $\pm0.711106316528$, $\pm0.834728420735$
Angle rank:  $3$ (numerical)
Number field:  6.0.7761268.1
Galois group:  $S_4\times C_2$
Jacobians:  $2$
Cyclic group of points:    yes

This isogeny class is simple and geometrically simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

$p$-rank:  $2$
Slopes:  $[0, 0, 1/2, 1/2, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $257$ $5911$ $247748$ $18519163$ $950142107$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $10$ $22$ $61$ $282$ $900$ $4159$ $16670$ $65682$ $260917$ $1048102$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 2 curves (of which 0 are hyperelliptic):

where $a$ is a root of the Conway polynomial.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{2^{2}}$.

Endomorphism algebra over $\F_{2^{2}}$
The endomorphism algebra of this simple isogeny class is 6.0.7761268.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.4.af_p_abg$2$3.16.f_z_ea