Properties

Label 3.4.ae_n_abc
Base field $\F_{2^{2}}$
Dimension $3$
$p$-rank $2$
Ordinary no
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{2^{2}}$
Dimension:  $3$
L-polynomial:  $1 - 4 x + 13 x^{2} - 28 x^{3} + 52 x^{4} - 64 x^{5} + 64 x^{6}$
Frobenius angles:  $\pm0.185044400669$, $\pm0.380155308860$, $\pm0.565199709530$
Angle rank:  $2$ (numerical)
Number field:  6.0.399424.1
Galois group:  $D_{6}$
Jacobians:  $1$

This isogeny class is simple and geometrically simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

$p$-rank:  $2$
Slopes:  $[0, 0, 1/2, 1/2, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $34$ $7684$ $300322$ $16720384$ $1131706354$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $1$ $27$ $73$ $255$ $1081$ $4179$ $16409$ $66111$ $262873$ $1044147$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobian of 1 curve (which is hyperelliptic):

where $a$ is a root of the Conway polynomial.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{2^{2}}$.

Endomorphism algebra over $\F_{2^{2}}$
The endomorphism algebra of this simple isogeny class is 6.0.399424.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.4.e_n_bc$2$3.16.k_bx_hc
3.4.ac_ad_q$4$(not in LMFDB)
3.4.c_ad_aq$4$(not in LMFDB)