Properties

Label 3.4.ac_ad_q
Base field $\F_{2^{2}}$
Dimension $3$
$p$-rank $2$
Ordinary no
Supersingular no
Simple yes
Geometrically simple yes
Primitive no
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{2^{2}}$
Dimension:  $3$
L-polynomial:  $1 - 2 x - 3 x^{2} + 16 x^{3} - 12 x^{4} - 32 x^{5} + 64 x^{6}$
Frobenius angles:  $\pm0.119844691140$, $\pm0.314955599331$, $\pm0.934800290470$
Angle rank:  $2$ (numerical)
Number field:  6.0.399424.1
Galois group:  $D_{6}$
Jacobians:  $4$

This isogeny class is simple and geometrically simple, not primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

$p$-rank:  $2$
Slopes:  $[0, 0, 1/2, 1/2, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $32$ $2176$ $366752$ $16720384$ $1116666272$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $3$ $7$ $87$ $255$ $1063$ $4015$ $16439$ $66111$ $263751$ $1053007$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which 1 is hyperelliptic):

where $a$ is a root of the Conway polynomial.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{2^{2}}$.

Endomorphism algebra over $\F_{2^{2}}$
The endomorphism algebra of this simple isogeny class is 6.0.399424.1.

Base change

This isogeny class is not primitive. It is a base change from the following isogeny classes over subfields of $\F_{2^{2}}$.

SubfieldPrimitive Model
$\F_{2}$3.2.a_ab_ac
$\F_{2}$3.2.a_ab_c

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.4.c_ad_aq$2$3.16.ak_bx_ahc
3.4.ae_n_abc$4$(not in LMFDB)
3.4.e_n_bc$4$(not in LMFDB)