Invariants
Base field: | $\F_{23}$ |
Dimension: | $3$ |
L-polynomial: | $1 + 6 x + 57 x^{2} + 280 x^{3} + 1311 x^{4} + 3174 x^{5} + 12167 x^{6}$ |
Frobenius angles: | $\pm0.459913838914$, $\pm0.485571585608$, $\pm0.793295314798$ |
Angle rank: | $3$ (numerical) |
Number field: | 6.0.9989877744.1 |
Galois group: | $S_4\times C_2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $3$ |
Slopes: | $[0, 0, 0, 1, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $16996$ | $171251696$ | $1805957959708$ | $21831464869037824$ | $266255468790833697476$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $30$ | $608$ | $12198$ | $278780$ | $6427170$ | $148094768$ | $3404932554$ | $78309903356$ | $1801151595030$ | $41426514142928$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 47 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:
- $y^2=x^8+9 x^6+8 x^5+21 x^3+19 x^2+14 x+1$
- $y^2=x^8+5 x^7+17 x^6+6 x^5+18 x^4+15 x^3+20 x^2+2 x+18$
- $y^2=x^8+9 x^7+x^6+20 x^5+22 x^4+17 x^3+11 x^2+3 x+4$
- $y^2=x^8+13 x^7+8 x^6+8 x^5+7 x^4+20 x^2+2 x+13$
- $y^2=x^8+18 x^7+10 x^6+20 x^5+5 x^4+9 x^3+5 x^2+14 x+1$
- $y^2=x^8+x^7+3 x^6+20 x^5+16 x^4+7 x^3+10 x^2+11 x+9$
- $y^2=x^8+9 x^7+2 x^6+12 x^5+7 x^4+4 x^3+20 x^2+4$
- $y^2=x^8+x^7+17 x^6+x^5+5 x^4+20 x^3+19 x^2+16 x+6$
- $y^2=22 x^8+13 x^7+14 x^6+3 x^5+7 x^4+18 x^3+2 x^2+12 x+17$
- $y^2=x^8+13 x^7+7 x^6+20 x^5+4 x^4+9 x^3+12 x^2+8 x+15$
- $y^2=22 x^8+13 x^7+8 x^6+6 x^5+2 x^3+9$
- $y^2=x^8+22 x^6+5 x^5+12 x^4+4 x^3+4 x+2$
- $y^2=22 x^8+18 x^7+3 x^6+17 x^5+12 x^4+17 x^3+5 x^2+19 x+21$
- $y^2=x^8+17 x^7+11 x^5+3 x^4+10 x^3+22 x^2+20 x+3$
- $y^2=22 x^8+19 x^7+22 x^6+18 x^5+18 x^4+x^3+18 x^2+10 x+7$
- $y^2=22 x^8+11 x^7+16 x^6+17 x^5+6 x^4+9 x^3+11 x^2+13 x+3$
- $y^2=x^8+8 x^7+x^6+5 x^5+2 x^4+7 x^2+6 x+17$
- $y^2=x^8+8 x^7+11 x^5+19 x^4+6 x^3+11 x^2+8 x+14$
- $y^2=x^8+3 x^7+9 x^6+2 x^5+4 x^4+4 x^3+19 x^2+6 x+12$
- $y^2=x^8+3 x^7+10 x^6+17 x^5+18 x^4+7 x^3+9 x^2+3 x+4$
- and 27 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23}$.
Endomorphism algebra over $\F_{23}$The endomorphism algebra of this simple isogeny class is 6.0.9989877744.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
3.23.ag_cf_aku | $2$ | (not in LMFDB) |