Properties

Label 3.23.g_cf_ku
Base field $\F_{23}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{23}$
Dimension:  $3$
L-polynomial:  $1 + 6 x + 57 x^{2} + 280 x^{3} + 1311 x^{4} + 3174 x^{5} + 12167 x^{6}$
Frobenius angles:  $\pm0.459913838914$, $\pm0.485571585608$, $\pm0.793295314798$
Angle rank:  $3$ (numerical)
Number field:  6.0.9989877744.1
Galois group:  $S_4\times C_2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $16996$ $171251696$ $1805957959708$ $21831464869037824$ $266255468790833697476$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $30$ $608$ $12198$ $278780$ $6427170$ $148094768$ $3404932554$ $78309903356$ $1801151595030$ $41426514142928$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 47 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{23}$.

Endomorphism algebra over $\F_{23}$
The endomorphism algebra of this simple isogeny class is 6.0.9989877744.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.23.ag_cf_aku$2$(not in LMFDB)