Invariants
Base field: | $\F_{23}$ |
Dimension: | $3$ |
L-polynomial: | $1 + 6 x + 41 x^{2} + 128 x^{3} + 943 x^{4} + 3174 x^{5} + 12167 x^{6}$ |
Frobenius angles: | $\pm0.320815159166$, $\pm0.642340808156$, $\pm0.758986043169$ |
Angle rank: | $3$ (numerical) |
Number field: | 6.0.292440304.1 |
Galois group: | $S_4\times C_2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $3$ |
Slopes: | $[0, 0, 0, 1, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $16460$ | $162032240$ | $1780591164980$ | $22067559642976000$ | $266565079661877512300$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $30$ | $576$ | $12030$ | $281788$ | $6434650$ | $147994512$ | $3404805210$ | $78311063292$ | $1801155419430$ | $41426514777136$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 292 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:
- $y^2=x^8+16 x^7+22 x^6+4 x^5+5 x^3+19 x^2+11 x+1$
- $y^2=22 x^8+14 x^7+20 x^6+2 x^5+20 x^4+22 x^3+19 x^2+x+4$
- $y^2=x^8+6 x^7+2 x^6+14 x^5+11 x^4+19 x^3+22 x+6$
- $y^2=x^8+10 x^7+5 x^6+5 x^5+10 x^4+2 x^3+18 x+8$
- $y^2=x^8+18 x^7+11 x^6+18 x^5+16 x^4+3 x^3+19 x+6$
- $y^2=x^8+15 x^7+14 x^6+21 x^5+6 x^4+12 x^3+11 x^2+22 x+16$
- $y^2=22 x^8+5 x^7+6 x^5+20 x^4+3 x^3+18 x^2+x+18$
- $y^2=22 x^8+5 x^7+18 x^6+13 x^5+19 x^4+20 x^3+7 x^2+11 x+18$
- $y^2=x^8+20 x^7+10 x^6+x^5+5 x^4+18 x^3+19 x^2+15 x+21$
- $y^2=x^8+17 x^7+17 x^6+21 x^5+4 x^4+19 x^3+5 x^2+2 x+19$
- $y^2=x^8+9 x^7+5 x^6+2 x^5+x^4+18 x^3+18 x^2+9 x$
- $y^2=x^7+20 x^6+10 x^5+18 x^4+8 x^3+20 x^2+7 x+17$
- $y^2=22 x^8+6 x^7+10 x^6+13 x^5+13 x^4+8 x^3+15 x+13$
- $y^2=22 x^8+13 x^7+21 x^6+2 x^5+19 x^4+17 x^3+7 x^2+6 x+20$
- $y^2=x^8+5 x^7+8 x^6+12 x^5+15 x^4+16 x^3+17 x^2+18 x+13$
- $y^2=x^8+17 x^7+12 x^6+12 x^5+19 x^4+2 x^3+20 x^2+18$
- $y^2=22 x^8+16 x^7+11 x^6+4 x^5+2 x^4+22 x^3+x^2+10 x+11$
- $y^2=x^7+19 x^6+16 x^5+4 x^4+16 x^3+6 x^2+14 x+9$
- $y^2=22 x^8+15 x^7+22 x^6+6 x^5+8 x^4+12 x^3+20 x^2+12 x+2$
- $y^2=22 x^8+7 x^7+15 x^6+4 x^5+22 x^4+18 x^3+3 x^2+10 x+1$
- and 272 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23}$.
Endomorphism algebra over $\F_{23}$The endomorphism algebra of this simple isogeny class is 6.0.292440304.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
3.23.ag_bp_aey | $2$ | (not in LMFDB) |