Invariants
| Base field: | $\F_{23}$ |
| Dimension: | $3$ |
| L-polynomial: | $1 - 7 x + 26 x^{2} - 30 x^{3} + 598 x^{4} - 3703 x^{5} + 12167 x^{6}$ |
| Frobenius angles: | $\pm0.208527960880$, $\pm0.289090656560$, $\pm0.737301365589$ |
| Angle rank: | $3$ (numerical) |
| Number field: | 6.0.29392237647.1 |
| Galois group: | $S_4\times C_2$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $3$ |
| Slopes: | $[0, 0, 0, 1, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $9052$ | $149647664$ | $1817927905708$ | $22142352625280704$ | $266763206406577758272$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $17$ | $533$ | $12281$ | $282737$ | $6439432$ | $148030913$ | $3404825875$ | $78309861041$ | $1801152130055$ | $41426515924508$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 40 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:
- $y^2=22 x^8+9 x^7+5 x^6+15 x^5+10 x^4+15 x^3+11 x^2+20 x+11$
- $y^2=22 x^8+3 x^7+21 x^6+12 x^5+4 x^4+13 x^3+3 x^2+8 x+17$
- $y^2=x^8+9 x^7+8 x^6+22 x^5+13 x^4+7 x^3+5 x^2+13 x+21$
- $y^2=22 x^8+x^7+3 x^6+5 x^5+x^4+x^3+12 x^2+7 x+22$
- $y^2=x^7+4 x^6+11 x^5+15 x^4+5 x^3+15 x^2+16 x+11$
- $y^2=x^7+13 x^6+18 x^5+17 x^4+20 x^3+16 x^2+4 x+10$
- $y^2=22 x^8+10 x^7+19 x^6+20 x^5+12 x^4+6 x^3+10 x^2+17$
- $y^2=22 x^8+7 x^7+15 x^6+8 x^5+13 x^4+17 x^3+10 x^2+17 x+3$
- $y^2=22 x^8+21 x^7+15 x^6+19 x^5+3 x^4+10 x^3+2 x^2+x+9$
- $y^2=22 x^8+3 x^7+14 x^6+20 x^5+17 x^4+13 x^3+4 x^2+12$
- $y^2=22 x^8+18 x^7+6 x^6+14 x^5+x^3+x^2+10 x+20$
- $y^2=x^8+8 x^7+6 x^6+17 x^5+21 x^4+4 x^3+13 x+6$
- $y^2=22 x^8+20 x^7+2 x^6+x^5+12 x^4+7 x^2+17 x+5$
- $y^2=22 x^8+11 x^7+16 x^6+4 x^5+15 x^4+x^3+13 x^2+22 x+19$
- $y^2=22 x^8+5 x^7+4 x^6+20 x^5+11 x^4+20 x^3+9 x^2+7 x+22$
- $y^2=22 x^8+17 x^7+22 x^6+16 x^5+11 x^3+3 x^2+6 x+2$
- $y^2=22 x^8+x^7+11 x^6+11 x^5+21 x^4+4 x^3+7 x^2+5 x+11$
- $y^2=x^8+7 x^7+4 x^6+8 x^5+17 x^4+19 x^3+4 x^2+18 x+14$
- $y^2=22 x^8+10 x^7+14 x^6+19 x^5+17 x^4+11 x^3+17 x^2+21 x+2$
- $y^2=22 x^8+6 x^7+16 x^6+11 x^5+4 x^4+14 x^3+4 x^2+4 x$
- and 20 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23}$.
Endomorphism algebra over $\F_{23}$| The endomorphism algebra of this simple isogeny class is 6.0.29392237647.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 3.23.h_ba_be | $2$ | (not in LMFDB) |