Properties

Label 3.23.ah_ba_abe
Base field $\F_{23}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{23}$
Dimension:  $3$
L-polynomial:  $1 - 7 x + 26 x^{2} - 30 x^{3} + 598 x^{4} - 3703 x^{5} + 12167 x^{6}$
Frobenius angles:  $\pm0.208527960880$, $\pm0.289090656560$, $\pm0.737301365589$
Angle rank:  $3$ (numerical)
Number field:  6.0.29392237647.1
Galois group:  $S_4\times C_2$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $9052$ $149647664$ $1817927905708$ $22142352625280704$ $266763206406577758272$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $17$ $533$ $12281$ $282737$ $6439432$ $148030913$ $3404825875$ $78309861041$ $1801152130055$ $41426515924508$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 40 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{23}$.

Endomorphism algebra over $\F_{23}$
The endomorphism algebra of this simple isogeny class is 6.0.29392237647.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.23.h_ba_be$2$(not in LMFDB)