Invariants
Base field: | $\F_{2}$ |
Dimension: | $3$ |
L-polynomial: | $( 1 + 2 x^{2} )( 1 + 2 x^{2} + 4 x^{4} )$ |
$1 + 4 x^{2} + 8 x^{4} + 8 x^{6}$ | |
Frobenius angles: | $\pm0.333333333333$, $\pm0.5$, $\pm0.666666666667$ |
Angle rank: | $0$ (numerical) |
Jacobians: | $1$ |
This isogeny class is not simple, primitive, not ordinary, and supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is supersingular.
$p$-rank: | $0$ |
Slopes: | $[1/2, 1/2, 1/2, 1/2, 1/2, 1/2]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $21$ | $441$ | $441$ | $3969$ | $34881$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $3$ | $13$ | $9$ | $17$ | $33$ | $49$ | $129$ | $257$ | $513$ | $1153$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobian of 1 curve (which is not hyperelliptic):
- $x^4+x^3 y+x z^3+y^4=0$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{2^{12}}$.
Endomorphism algebra over $\F_{2}$The isogeny class factors as 1.2.a $\times$ 2.2.a_c and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{2^{12}}$ is 1.4096.aey 3 and its endomorphism algebra is $\mathrm{M}_{3}(B)$, where $B$ is the quaternion algebra over \(\Q\) ramified at $2$ and $\infty$. |
- Endomorphism algebra over $\F_{2^{2}}$
The base change of $A$ to $\F_{2^{2}}$ is 1.4.c 2 $\times$ 1.4.e. The endomorphism algebra for each factor is: - 1.4.c 2 : $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$
- 1.4.e : the quaternion algebra over \(\Q\) ramified at $2$ and $\infty$.
- Endomorphism algebra over $\F_{2^{3}}$
The base change of $A$ to $\F_{2^{3}}$ is 1.8.a $\times$ 2.8.a_aq. The endomorphism algebra for each factor is: - 1.8.a : \(\Q(\sqrt{-2}) \).
- 2.8.a_aq : the quaternion algebra over \(\Q(\sqrt{2}) \) ramified at both real infinite places.
- Endomorphism algebra over $\F_{2^{4}}$
The base change of $A$ to $\F_{2^{4}}$ is 1.16.ai $\times$ 1.16.e 2 . The endomorphism algebra for each factor is: - 1.16.ai : the quaternion algebra over \(\Q\) ramified at $2$ and $\infty$.
- 1.16.e 2 : $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$
- Endomorphism algebra over $\F_{2^{6}}$
The base change of $A$ to $\F_{2^{6}}$ is 1.64.aq 2 $\times$ 1.64.q. The endomorphism algebra for each factor is:
Base change
This is a primitive isogeny class.