Properties

Label 3.2.a_c_d
Base field $\F_{2}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{2}$
Dimension:  $3$
L-polynomial:  $( 1 - x + 2 x^{2} )( 1 + x + x^{2} + 2 x^{3} + 4 x^{4} )$
  $1 + 2 x^{2} + 3 x^{3} + 4 x^{4} + 8 x^{6}$
Frobenius angles:  $\pm0.347634004421$, $\pm0.384973271919$, $\pm0.802798946039$
Angle rank:  $3$ (numerical)
Jacobians:  $0$
Isomorphism classes:  1

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $18$ $216$ $1512$ $7344$ $12078$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $3$ $9$ $18$ $25$ $3$ $54$ $129$ $305$ $594$ $909$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{2}$.

Endomorphism algebra over $\F_{2}$
The isogeny class factors as 1.2.ab $\times$ 2.2.b_b and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.2.ac_e_af$2$3.4.e_m_x
3.2.a_c_ad$2$3.4.e_m_x
3.2.c_e_f$2$3.4.e_m_x