Invariants
| Base field: | $\F_{2}$ |
| Dimension: | $3$ |
| L-polynomial: | $( 1 - 2 x + 2 x^{2} )( 1 + 2 x^{2} )( 1 + 2 x + 2 x^{2} )$ |
| $1 + 2 x^{2} + 4 x^{4} + 8 x^{6}$ | |
| Frobenius angles: | $\pm0.250000000000$, $\pm0.5$, $\pm0.750000000000$ |
| Angle rank: | $0$ (numerical) |
| Jacobians: | $0$ |
This isogeny class is not simple, primitive, not ordinary, and supersingular. It is principally polarizable.
Newton polygon
This isogeny class is supersingular.
| $p$-rank: | $0$ |
| Slopes: | $[1/2, 1/2, 1/2, 1/2, 1/2, 1/2]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $15$ | $225$ | $585$ | $5625$ | $33825$ |
Point counts of the (virtual) curve
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $3$ | $9$ | $9$ | $25$ | $33$ | $81$ | $129$ | $161$ | $513$ | $1089$ |
Jacobians and polarizations
This isogeny class is principally polarizable, but does not contain a Jacobian.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{2^{8}}$.
Endomorphism algebra over $\F_{2}$| The isogeny class factors as 1.2.ac $\times$ 1.2.a $\times$ 1.2.c and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
| The base change of $A$ to $\F_{2^{8}}$ is 1.256.abg 3 and its endomorphism algebra is $\mathrm{M}_{3}(B)$, where $B$ is the quaternion algebra over \(\Q\) ramified at $2$ and $\infty$. |
- Endomorphism algebra over $\F_{2^{2}}$
The base change of $A$ to $\F_{2^{2}}$ is 1.4.a 2 $\times$ 1.4.e. The endomorphism algebra for each factor is: - 1.4.a 2 : $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$
- 1.4.e : the quaternion algebra over \(\Q\) ramified at $2$ and $\infty$.
- Endomorphism algebra over $\F_{2^{4}}$
The base change of $A$ to $\F_{2^{4}}$ is 1.16.ai $\times$ 1.16.i 2 . The endomorphism algebra for each factor is:
Base change
This is a primitive isogeny class.