Properties

Label 3.2.a_ab_b
Base field $\F_{2}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{2}$
Dimension:  $3$
L-polynomial:  $1 - x^{2} + x^{3} - 2 x^{4} + 8 x^{6}$
Frobenius angles:  $\pm0.136803573082$, $\pm0.483868732217$, $\pm0.909340018530$
Angle rank:  $3$ (numerical)
Number field:  6.0.12663175.1
Galois group:  $S_4\times C_2$
Jacobians:  $1$
Isomorphism classes:  1

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $7$ $35$ $931$ $2275$ $40957$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $3$ $3$ $12$ $7$ $38$ $96$ $150$ $279$ $489$ $1168$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobian of 1 curve (which is not hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{2}$.

Endomorphism algebra over $\F_{2}$
The endomorphism algebra of this simple isogeny class is 6.0.12663175.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.2.a_ab_ab$2$3.4.ac_ad_t