Properties

Label 3.19.e_bu_fv
Base field $\F_{19}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{19}$
Dimension:  $3$
L-polynomial:  $1 + 4 x + 46 x^{2} + 151 x^{3} + 874 x^{4} + 1444 x^{5} + 6859 x^{6}$
Frobenius angles:  $\pm0.428604814530$, $\pm0.503218498719$, $\pm0.734194680515$
Angle rank:  $3$ (numerical)
Number field:  6.0.550527691.3
Galois group:  $A_4\times C_2$
Cyclic group of points:    yes

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $9379$ $57971599$ $321088536223$ $2205419859661291$ $15154877204996062129$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $24$ $438$ $6825$ $129858$ $2471814$ $47058609$ $893981462$ $16983120690$ $322687154244$ $6131070460278$

Jacobians and polarizations

This isogeny class is principally polarizable and contains no Jacobian of a hyperelliptic curve, but it is unknown whether it contains a Jacobian of a non-hyperelliptic curve.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{19}$.

Endomorphism algebra over $\F_{19}$
The endomorphism algebra of this simple isogeny class is 6.0.550527691.3.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.19.ae_bu_afv$2$(not in LMFDB)