Invariants
Base field: | $\F_{19}$ |
Dimension: | $3$ |
L-polynomial: | $1 - 18 x + 161 x^{2} - 878 x^{3} + 3059 x^{4} - 6498 x^{5} + 6859 x^{6}$ |
Frobenius angles: | $\pm0.108708793335$, $\pm0.284528497925$, $\pm0.334766213106$ |
Angle rank: | $3$ (numerical) |
Number field: | 6.0.494066624.1 |
Galois group: | $S_4\times C_2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $3$ |
Slopes: | $[0, 0, 0, 1, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2686$ | $46935164$ | $333539591218$ | $2227948590997616$ | $15178394705439814846$ |
Point counts of the (virtual) curve
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $2$ | $360$ | $7088$ | $131180$ | $2475652$ | $47030172$ | $893827426$ | $16983771996$ | $322690181990$ | $6131077685060$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains no Jacobian of a hyperelliptic curve, but it is unknown whether it contains a Jacobian of a non-hyperelliptic curve.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19}$.
Endomorphism algebra over $\F_{19}$The endomorphism algebra of this simple isogeny class is 6.0.494066624.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
3.19.s_gf_bhu | $2$ | (not in LMFDB) |