Properties

Label 3.19.as_gf_abhu
Base field $\F_{19}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{19}$
Dimension:  $3$
L-polynomial:  $1 - 18 x + 161 x^{2} - 878 x^{3} + 3059 x^{4} - 6498 x^{5} + 6859 x^{6}$
Frobenius angles:  $\pm0.108708793335$, $\pm0.284528497925$, $\pm0.334766213106$
Angle rank:  $3$ (numerical)
Number field:  6.0.494066624.1
Galois group:  $S_4\times C_2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2686$ $46935164$ $333539591218$ $2227948590997616$ $15178394705439814846$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $2$ $360$ $7088$ $131180$ $2475652$ $47030172$ $893827426$ $16983771996$ $322690181990$ $6131077685060$

Jacobians and polarizations

This isogeny class is principally polarizable and contains no Jacobian of a hyperelliptic curve, but it is unknown whether it contains a Jacobian of a non-hyperelliptic curve.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{19}$.

Endomorphism algebra over $\F_{19}$
The endomorphism algebra of this simple isogeny class is 6.0.494066624.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.19.s_gf_bhu$2$(not in LMFDB)