Properties

Label 3.19.al_de_aqp
Base field $\F_{19}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{19}$
Dimension:  $3$
L-polynomial:  $1 - 11 x + 82 x^{2} - 431 x^{3} + 1558 x^{4} - 3971 x^{5} + 6859 x^{6}$
Frobenius angles:  $\pm0.118811287197$, $\pm0.421397608704$, $\pm0.472525336687$
Angle rank:  $3$ (numerical)
Number field:  6.0.1193220400.1
Galois group:  $S_4\times C_2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4087$ $52775431$ $326643551764$ $2194166250926275$ $15160477540737208597$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $9$ $405$ $6942$ $129189$ $2472729$ $47067528$ $894016391$ $16983722229$ $322687107318$ $6131069714505$

Jacobians and polarizations

This isogeny class is principally polarizable and contains no Jacobian of a hyperelliptic curve, but it is unknown whether it contains a Jacobian of a non-hyperelliptic curve.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{19}$.

Endomorphism algebra over $\F_{19}$
The endomorphism algebra of this simple isogeny class is 6.0.1193220400.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.19.l_de_qp$2$(not in LMFDB)