Properties

Label 3.19.ak_cz_anq
Base field $\F_{19}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{19}$
Dimension:  $3$
L-polynomial:  $1 - 10 x + 77 x^{2} - 354 x^{3} + 1463 x^{4} - 3610 x^{5} + 6859 x^{6}$
Frobenius angles:  $\pm0.278329722546$, $\pm0.292576990832$, $\pm0.532162528353$
Angle rank:  $3$ (numerical)
Number field:  6.0.3541000640.1
Galois group:  $S_4\times C_2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4426$ $54767324$ $334549226038$ $2224075834670960$ $15199177069152382426$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $10$ $416$ $7108$ $130956$ $2479040$ $47040308$ $893714762$ $16983060572$ $322689073678$ $6131077556316$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 3 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{19}$.

Endomorphism algebra over $\F_{19}$
The endomorphism algebra of this simple isogeny class is 6.0.3541000640.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.19.k_cz_nq$2$(not in LMFDB)