Properties

Label 3.19.ag_ba_abs
Base field $\F_{19}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{19}$
Dimension:  $3$
L-polynomial:  $1 - 6 x + 26 x^{2} - 44 x^{3} + 494 x^{4} - 2166 x^{5} + 6859 x^{6}$
Frobenius angles:  $\pm0.245622620259$, $\pm0.291826102417$, $\pm0.719775534135$
Angle rank:  $3$ (numerical)
Number field:  6.0.1047718739.1
Galois group:  $S_4\times C_2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $5164$ $49553744$ $328326872128$ $2247781811852096$ $15192262941025836604$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $14$ $378$ $6980$ $132338$ $2477914$ $47029884$ $893833822$ $16982985570$ $322687162364$ $6131074395578$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 35 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{19}$.

Endomorphism algebra over $\F_{19}$
The endomorphism algebra of this simple isogeny class is 6.0.1047718739.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.19.g_ba_bs$2$(not in LMFDB)